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Federated Learning

● Federated Learning (FL)1 allows multiple 

distributed clients to collaborate on 

training the same Machine Learning (ML) 

model without sharing raw data.

● Currently, most FL networks have a central 

server that coordinates the federated 

training process, leading to a single point of 

failure2.

● Possible solution? Combine Blockchain 

with Federated Learning!

Generic FL Architecture

1. McMahan, H. B., Moore, E., Ramage, D., Hampson, S., and Arcas, B. A. y. Communication-efficient learning of deep networks from decentralized data.
2. Li, D., Han, D., Weng, T.-H., Zheng, Z., Li, H., Liu, H., Castiglione, A., and Li, K.-C. Blockchain for federated learning toward secure distributed machine learning systems: a systemic survey. Soft Computing (Nov. 2021).
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Introduction & Background

Blockchain

1. Qu, Y., Uddin, M. P., Gan, C., Xiang, Y., Gao, L., and Yearwood, J. Blockchain-Enabled Federated Learning: A Survey. ACM Computing Surveys (Mar. 2022), 3524104.
2. Bonawitz, K. et al.. Towards federated learning at scale: System design. In Proceedings of Machine Learning and Systems (2019), A. Talwalkar, V. Smith, and M. Zaharia, Eds., vol. 1, pp. 374–388.
3. Li, D., Han, D., Weng, T.-H., Zheng, Z., Li, H., Liu, H., Castiglione, A., and Li, K.-C. Blockchain for federated learning toward secure distributed machine learning systems: a systemic survey. Soft Computing (Nov. 2021).
4.  Wang, S., Yuan, Y., Wang, X., Li, J., Qin, R., and Wang, F.-Y. An overview of smart contract: Architecture, applications, and future trends. In 2018 IEEE Intelligent Vehicles Symposium (IV) (2018), pp. 108–113.

● Distributed ledger maintained by distributed computers.

● Guarantees decentralization1.

● Facilitates traceability2, auditability2, data persistency2, and authentication1.

● Transparent reward distribution3.

● Can support smart contracts4.

● Has a consensus algorithm.

Blockchain Representation
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● No more single point of failure!

● Consensus Algorithm: blockchain process consensus. 

E.g.: PoW, PoA, QBFT.

● Participant Selection Algorithms: how many and which 

clients participate in each round. E.g.: random, 

first-come first-served.

● Scoring and Aggregation Algorithms: classify client 

model updates, to prevent poisoning1 and plagiarism 

attacks2. E.g.: BlockFlow, Marginal Gain, Multi-KRUM.

● Privacy Mechanisms: prevent inference attacks3. E.g.: 

Local Differential Privacy through a randomized 

algorithm A to apply noise to the original data4

Blockchain-based Federated Learning (BFL)

Generic BFL Architecture

Introduction & Background

1. Qu, Y., Pokhrel, S. R., Garg, S., Gao, L., and Xiang, Y. A blockchained federated learning framework for cognitive computing in industry 4.0 networks. IEEE Transactions on Industrial Informatics 17, 4 (2021), 2964–2973.
2. Ma, C., Li, J., Shi, L., Ding, M., Wang, T., Han, Z., and Poor, H. V. When federated learning meets blockchain: A new distributed learning paradigm. IEEE Computational Intelligence Magazine 17, 3 (2022), 26–33.
3. Yang, Q., Liu, Y., Chen, T., and Tong, Y. Federated machine learning: Concept and applications. ACM Trans. Intell. Syst. Technol. 10, 2 (jan 2019).
4. Wei, K., Li, J., Ma, C., Ding, M., Wei, S., Wu, F., Chen, G., and Ranbaduge, T. Vertical federated learning: Challenges, methodologies and experiments, 2022.
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Introduction & Background

● Consensus Algorithms: PoW, PoA, PoS.

● Model Parameter Storage: mostly off-chain.

● Model Update Submission Validation: mostly 

through scoring algorithms.

● Privacy Mechanisms: Local Differential Privacy, 

Homomorphic Encryption.

● Data Partition: mostly horizontal.

State of the Art
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Federated Learning Categories (Adapted From 1)

1. Adapted From Yang, Q., Liu, Y., Chen, T., and Tong, Y. Federated machine learning: Concept and applications. ACM Trans. Intell. Syst. Technol. 10, 2 (jan 2019).
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● Lack of analysis on how different components of a BFL system impact the accuracy, 

communication and computation costs of the system - specially important in IoT 

networks.

● No open-source or modular BFL framework that can be re-used by others.

● No implementation of Vertical Federated Learning in a BFL setting.

Introduction & Background 

Open Problems In The Literature
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Introduction & Background

What is the impact of different consensus, participant selection and scoring 

algorithms in a Blockchain-based Federated Learning system on execution time, 

convergence and accuracy, as well as communication and computation costs?

Main Research Question
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Framework Design & 
Implementation



Framework Design

● Devices are categorized as: trainers, aggregators, scorers.

● Model owner: who deploys the system and starts the training process. 

● Modular execution flow.

● 50% threat model.

BlockLearning's Execution Flow

BlockLearning
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Framework Design

BlockLearning's Structure and Modules

Components
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Framework Design

BlockLearning's Structure and Modules

Components
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Framework Design

BlockLearning's Structure and Modules

Components
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Framework Design

BlockLearning's Structure and Modules

Components
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1. Ethereum, https://ethereum.org

Smart Contracts

Smart Contracts Class Diagram

● Platform: Ethereum1

● Language: Solidity

● Base provides the 

common data 

structures and 

functionality.

● Other smart 

contracts provide 

specific 

functionalities.

Framework Implementation
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Framework Implementation

● Language: Python1

● Aggregation, Scoring and Privacy Algorithms
○ Common interfaces, e.g.:

■ score(round, trainers, updates) → trainers, scores
○ Used IBM Differential Privacy Library2

● Weights Storage and Retrieval
○ Common interface
○ InterPlanetary File System3

● Smart Contract Bridge
○ Common interface
○ Web3.py4

● Trainer, Scorer and Aggregator Classes
○ Common interface
○ train() , score() , aggregate()

Library

1. Python, https://www.python.org
2. Diffprivlib: The IBM Differential Privacy Library, https://diffprivlib.readthedocs.io
3. InterPlanetary File System (IPFS), https://ipfs.tech
4. Web3.py, https://web3py.readthedocs.io
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Framework Implementation

● Execution Environment: Docker1

● Client, Server and Owner Scripts
○ Implemented using the BlockLearning library.
○ Load data, initialize algorithms, run procedure.

● Blockchain Setup and Deployment
○ go-ethereum 2, and quorum3

○ Docker Compose

● Federated Learning Setup and Deployment
○ Docker Compose

● Statistics and Metrics Collection
○ Internal Logs from the Trainer, Scorer and Aggregator classes
○ docker stats  for RAM, CPU and Network Traffic

Testbed

1. Docker, https://www.docker.com
2. Go Ethereum, https://geth.ethereum.org/
3. Quorum, https://consensys.net/quorum/
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Dataset & Client Sampling

Horizontal Data Distribution For 10 Clients● Dataset: MNIST1.

● Horizontal Client Sampling: Dirichlet 

distribution Dir(α) to simulate a non-iid 

distribution2 with α = 0.1.

● Vertical Client Sampling: Different features = 

different parts of the image3.

Experimental Setup and Evaluation

Vertical Data Distribution for 2 Clients

1. LeCun, Y., Cortes, C., and Burges, C. Mnist handwritten digit database. ATT Labs [Online]. Available: http://yann.lecun.com/exdb/mnist 2 (2010).
2. Lin, T., Kong, L., Stich, S. U., and Jaggi, M. Ensemble distillation for robust model fusion in federated learning. In Advances in Neural Information Processing Systems (2020), H. Larochelle, M. Ranzato, R. Hadsell, M. Balcan, and H. Lin, Eds., vol. 33, 
Curran Associates, Inc., pp. 2351–2363.
3. Romanini, D., Hall, A. J., Papadopoulos, P., Titcombe, T., Ismail, A., Cebere, T., Sandmann, R., Roehm, R., and Hoeh, M. A. Pyvertical: A vertical federated learning framework for multi-headed splitnn, 2021.
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ML Models
Experimental Setup and Evaluation

Dual-headed Split-CNN

Horizontal CNN

19



Metrics & Experimental Groups

Metrics

● Execution Time
○ End-to-End (E2E) Execution Time (m), Mean 

Round Execution Time (s)

● Blockchain Costs
○ Transaction Latency (s), Transaction Cost (gas)

● Model Performance
○ Accuracy (%)

● Communication Costs*
○ Network Traffic Per Round (MB)

● Computation Costs*
○ RAM Usage (MB), CPU Usage (%)

* On client, server and blockchain processes. Note that 
blockchain and server usually run on same machine.

Experiment Groups

● Consensus Algorithms: PoA, PoW, QBFT.
● Horizontal FL

○ Participant Selection Mechanisms: random 
and first-come first-served.

○ Scoring Algorithms: BlockFlow, 
Multi-KRUM, Marginal Gain, none.

■ Number of Clients: 5, 10, 25, 50.
■ Privacy Degree: 1, 5, none.

● Vertical FL
○ Implementation of Vertical 

Blockchain-based Federated Learning
○ Extension of BlockLearning to support the 

Split-CNN

Experimental Setup and Evaluation
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Results

PoA PoW QBFT

E2E Time (m) 18.93 30.62 18.97

Mean Round Time (s) 22.70 36.72 22.74

Mean Transaction Latency (s) 1.549 1.821 1.558

Mean Transaction Cost (Gas) 183124 227052 18288

Impact Analysis of Consensus Algorithms

● PoW performed the worst, 

compared to PoA and QBFT.
○ 1.6x times slower.

○ 1.2x higher Tx Latency.

○ 1.2x higher Tx Costs.

○ Much higher RAM and CPU.

● Accuracy is unchanged (Fig 6.1, p. 45).

● QBFT incurs 2x more 

communication costs than PoW, 4x 

more than PoA.

● In general, PoA is the most 

cost-efficient.
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Impact Analysis of Participant Selection Algorithms
Results in Horizontal Federated Learning

● When clients take initiative, some may 
participate more than others. May lead to 
skewed results.

● Random (uniform) selection gives all clients 
an equal chance of participating.

● Round Time, Tx Latency and Costs, 

Communication and Computation costs are 

similar between algorithms.
(Remaining plots: pp. 44-45)
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Impact Analysis of Scoring Algorithms
Results in Horizontal Federated Learning

● Accuracies are high, but 
convergence and execution 
time differ:

○ Marginal Gain converges the 
fastest, higher accuracy than 
without scores.

○ BlockFlow converges the 
slowest.

○ Multi-KRUM converges in 
between and is the fastest to 
execute.

● Overall, scoring algorithms 
executed by clients have higher 
impact on the system.

(Remaining plots: pp. 45-50)

Metric None BlockFlow
Marginal 

Gain

Multi-

-KRUM

E2E Time (m) 18.93 40.95 41.38 26.25

Mean Round Time (s) 22.70 49.11 49.64 31.48

Mean Transaction Latency (s) 1.549 1.564 1.577 1.573

Mean Transaction Cost (Gas) 183124 339645 257686 280733
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Impact Analysis of Number of Clients
Results in Scoring Algorithms in Horizontal Federated Learning

● Execution time increase is higher for 

scoring algorithms executed by clients.

● In addition, #clients ≫ #servers.

● Trade-off between the number of 

clients with the blockchain resource 

usage.
(Remaining plots: pp. 50-54)

Blockchain Process
25



Impact Analysis of Privacy Degrees
Results in Scoring Algorithms in Horizontal Federated Learning

● Trade-off between execution time and 
privacy.

● Increasing the privacy degree does not 
have influence execution time or 
resource usage.

● Overall, higher privacy degrees lead to 
lower accuracy levels.

● Trade-off between traceability and 
auditability and the requirement for 
privacy mechanisms.

(Remaining plots: pp. 54-62)
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Proof of Concept of Vertical Blockchain-based Federated Learning

● New requirements:
○ Support different models for the trainers and the aggregators

○ Support additional backpropagation confirmation phase

● Implementation:
○ New phase WaitingForBackpropagation
○ New contract VerticalSplitCNN
○ TrainerSplitCNN , AggregatorSplitCNN

Extending the Framework

BlockLearning's Vertical Execution Flow

Split-CNN Smart Contracts Extension Class Diagram
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Proof of Concept of Vertical Blockchain-based Federated Learning

● Executed with 2 and 4 clients, the 

same way as the HBFL.

● Experimental results are within the 

expected values.

● Original accuracy is higher. May be 

related to:
○ Different implementation

○ Different ML library used

○ Other unknown variables in the system

(Remaining plots: pp. 70-75)

Experiment and Results

Metric 2 4

E2E Time (m) 18.08 24.30

Mean Round Time (s) 21.68 29.15

Mean Transaction Latency (s) 1.482 1.418

Mean Transaction Cost (Gas) 138659 141013
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Conclusions

What is the impact of different consensus, participant selection and scoring 

algorithms in a Blockchain-based Federated Learning system on execution time, 

convergence and accuracy, as well as communication and computation costs?

Looking Back At The Main Research Question
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Looking Back At The Main Research Question

● Blockchain

○ Overall execution time and costs increase.

● Consensus Algorithms
○ PoW: highest computation costs, slowest.

○ QBFT: highest communication costs, fast.

○ PoA: lower overall costs, fastest.

○ PoA is the most cost-efficient consensus 

algorithm analyzed

● Participant Selection Algorithms
○ Both have similar costs.

○ Random selection is fairer.

Conclusions

● Scoring Algorithms
○ Increase the execution time up to 2x.

○ Marginal Gain: highest accuracy with high 

number of clients and privacy degree. But 

highest computation costs for the clients.

○ Multi-KRUM: lowest computation costs for 

clients, high accuracy (better for IoT).

○ BlockFlow: worst in all aspects.

● Vertical Federated Learning
○ Possible to implement in a BFL setting.

○ First known implementation of VBFL.

○ BlockLearning is flexible and modular.
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Conclusions

1. Designed and implemented the first open-source and modular framework for BFL. Available 
at https://github.com/hacdias/blocklearning.

2. Provided the first comparative study on how different consensus, participant selection and 
scoring algorithms impact a BFL system*.

3. Provided the first comparative study on how the number of clients and different degrees of 
privacy for different scoring algorithms impact a BFL system*.

4. Implemented the first Vertical Blockchain-based Federated Learning framework.

* in terms of execution time, transaction costs, transaction latency, model accuracy and convergence, 
communication costs, and computation costs.

Contributions
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Conclusions

● Consensus Algorithms: investigate if it is feasible to extend the Ethereum blockchain 

with custom resource-efficient algorithms presented by others.

● Scoring Algorithms: investigate and develop new scoring algorithms that do not 

require model evaluation at the clients side, reducing resources usage.

● Blockchain-based VFL: make VFL BlockLearning extension more generic in order to 

support other vertical models and the Private Set Intersection phase.

● BlockLearning GUI: develop a graphical interface for BlockFlow to allow submission 

of training requests, visualization of the training process, and download the weights 

without needing a command-line.

Future Work
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Thank you!


