
 Eindhoven University of Technology

MASTER

Impact Analysis of Different Consensus, Participant Selection and Scoring Algorithms in
Blockchain-based Federated Learning Systems Using a Modular Framework

Coelho Dias, Henrique Afonso

Award date:
2022

Link to publication

Disclaimer
This document contains a student thesis (bachelor's or master's), as authored by a student at Eindhoven University of Technology. Student
theses are made available in the TU/e repository upon obtaining the required degree. The grade received is not published on the document
as presented in the repository. The required complexity or quality of research of student theses may vary by program, and the required
minimum study period may vary in duration.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain

https://research.tue.nl/en/studentTheses/04a5f7e4-7782-4f26-a864-a49d04f82966

Department of Mathematics and Computer Science

Impact Analysis of Different Consensus,
Participant Selection and Scoring Algorithms in
Blockchain-based Federated Learning Systems

Using a Modular Framework

Master Thesis

Henrique Afonso Coelho Dias

Supervisor

prof. dr. ir. N. Meratnia

Eindhoven, September 2022

Abstract

Federated Learning allows multiple distributed clients to collaborate on training the same
Machine Learning model. Blockchain-based Federated Learning has emerged in recent
years to improve its transparency and information safety issues. On the one hand, it
eliminates the need for a central orchestrator, removing the single point of failure in
the network. On the other hand, it facilitates aspects such as traceability, auditability,
authentication and persistency, that, together, improve the transparency and safety of
the federated training process and accommodate new verification algorithms in order to
detect malicious agents.

In these systems, it is common to score each client’s model update in order to deter-
mine if it is a good contribution to the global model. With Blockchain-based Federated
Learning being increasingly adopted in IoT networks, where low powered devices with
low resources are the norm, it is important to ensure that the system consumes the least
amount of resources. The current literature has very little information regarding how
different algorithms impact the resource usage of the system. Additionally, there is no
publicly available framework that can be used to implement a Blockchain-based Federated
Learning system.

In this thesis, we design and implement the first modular open-source framework for
Blockchain-based Federated Learning using Ethereum and TensorFlow. This framework
can be easily adapted to support multiple architectures, as well as different scoring,
aggregation, and privacy algorithms. With this framework, we proceed to do the first
known analysis of how different aspects of Blockchain-based Federated Learning, such as
consensus, participation selection and scoring algorithms, impact the accuracy, execution
time and communication and computation costs. Additionally, the same analysis will
be done per each scoring algorithm to analyze the impact of the number of clients and
privacy mechanisms on the aforementioned aspects. Finally, we also provide a proof
of concept of how the framework can be adapted to support, not only the Horizontal
Federated Learning, but also the Vertical Federated Learning.

i

Contents

List of Figures v

List of Tables vii

1 Introduction 1
1.1 Motivation . 1
1.2 Problem Statement . 2
1.3 Research Questions . 3
1.4 Contributions and Outline . 3

2 Background 4
2.1 Machine Learning . 4

2.1.1 Federated Learning . 4
2.1.2 Categories of Federated Learning 5

2.2 Blockchain . 5
2.2.1 Smart Contracts . 8
2.2.2 Blockchain Platforms . 8
2.2.3 Consensus Algorithm . 8

2.3 Blockchain-based Federated Learning . 9
2.3.1 Participants Selection Algorithms 9
2.3.2 Scoring and Aggregation Algorithms 10
2.3.3 Privacy Mechanisms . 12

3 Related Work 13
3.1 Consensus Algorithms . 13
3.2 Model Parameter Storage . 13
3.3 Participants Selection Algorithms . 14
3.4 Scoring and Aggregation Algorithms . 14
3.5 Privacy Mechanisms . 15
3.6 Other Remarks . 15
3.7 Conclusions . 15

4 Framework Design and Implementation 20
4.1 BlockLearning Framework’s Design . 20

4.1.1 Structure and Modules . 21
4.2 BlockLearning Framework’s Implementation 23

4.2.1 Smart Contracts . 23

ii

4.2.2 Library . 25
4.2.3 Testbed . 26

5 Experimental Setup and Evaluation 29
5.1 Data Set . 29
5.2 Client Sampling . 29

5.2.1 Horizontal . 30
5.2.2 Vertical . 30

5.3 Machine Learning Models . 31
5.3.1 Horizontal Model . 31
5.3.2 Vertical Model . 32

5.4 Hardware and Software Specifications . 33
5.5 Performance Evaluation Metrics . 33

5.5.1 Execution Time . 34
5.5.2 Transaction Costs and Transaction Latency 34
5.5.3 Model Accuracy . 34
5.5.4 Communication and Computation Costs 34

5.6 Experiment Groups . 35

6 Impact Analysis of Consensus Algorithms 36
6.1 Execution Time, Transaction Cost, and Transaction Latency 36
6.2 Model Accuracy and Convergence . 37
6.3 Communication Costs . 37
6.4 Computation Costs . 38
6.5 Conclusions and Improvements . 40

7 Impact Analysis of Participant Selection and Scoring Algorithms in
Horizontal Blockchain-based Federated Learning 41
7.1 Participant Selection Algorithms . 41

7.1.1 Execution Time, Transaction Cost, and Transaction Latency . . . 42
7.1.2 Model Accuracy and Convergence 42
7.1.3 Communication Costs . 43
7.1.4 Computation Costs . 43
7.1.5 Conclusions . 43

7.2 Scoring Algorithms . 45
7.2.1 Overall Comparison . 45
7.2.2 Number of Clients . 50
7.2.3 Privacy Degrees . 54

8 Proof of Concept of Vertical Blockchain-based Federated Learning 62
8.1 Requirements Analysis . 62
8.2 BlockLearning’s Extension . 63
8.3 Experiments and Results . 64

8.3.1 Execution Time, Transaction Cost, and Transaction Latency . . . 65
8.3.2 Model Accuracy and Convergence 65
8.3.3 Communication Costs . 65
8.3.4 Computation Costs . 66

8.4 Conclusions and Improvements . 67

iii CONTENTS

9 Conclusions and Future Directions 69
9.1 Looking Back at the Main Research Question 69
9.2 Future Work . 70

Bibliography 73

iv CONTENTS

List of Figures

2.1 Horizontal Federated Learning Architecture 6
2.2 Vertical Federated Learning Architecture 6
2.3 Blockchain Representation . 7
2.4 Blockchain Types . 7
2.5 Blockchain-based Federated Learning Architecture 10

4.1 BlockLearning’s Execution Flow . 20
4.2 BlockLearning’s Structure and Modules 21
4.3 Smart Contracts Class Diagram . 24

5.1 MNIST Example Samples . 29
5.2 Horizontal Data Distribution For 10 Clients 30
5.3 Vertical Data Distribution for 2 Clients 31
5.4 CNN Model Architecture . 32
5.5 Split-CNN Model Architecture . 33

6.1 Accuracy Per Consensus Algorithm . 37
6.2 Network Traffic Per Round Per Consensus Algorithm 38
6.3 RAM Usage Per Consensus Algorithm 39
6.4 CPU Usage Per Consensus Algorithm . 39

7.1 Participation of Each Client Per Selection Algorithm 42
7.2 Model Accuracy Per Participant Selection Algorithm 43
7.3 Network Traffic Per Round Per Participant Selection Algorithm 44
7.4 RAM Usage Per Participant Selection Algorithm 44
7.5 CPU Usage Per Participant Selection Algorithm 45
7.6 Model Accuracy Per Scoring Algorithm 46
7.7 Network Traffic Per Round Per Scoring Algorithm 47
7.8 RAM Usage Per Scoring Algorithm . 49
7.9 CPU Usage Per Scoring Algorithm . 49
7.10 Execution Time, Transaction Cost, and Transaction Latency Per Number

of Clients . 51
7.11 Model Accuracy Per Number of Clients 52
7.12 Network Traffic Per Number of Clients 53
7.13 Execution Time, Transaction Cost, and Transaction Latency Per Privacy

Degree . 55
7.14 Model Accuracy Per Privacy Degree . 55
7.15 Network Traffic Per Privacy Degree . 56
7.16 Client Process RAM Usage Per Number of Clients 58

v

7.17 Server Process RAM Usage Per Number of Clients 58
7.18 Blockchain Process RAM Usage Per Number of Clients 58
7.19 Client Process CPU Usage Per Number of Clients 59
7.20 Server Process CPU Usage Per Number of Clients 59
7.21 Blockchain Process CPU Usage Per Number of Clients 59
7.22 Client Process RAM Usage Per Privacy Degree 60
7.23 Server Process RAM Usage Per Privacy Degree 60
7.24 Blockchain Process RAM Usage Per Privacy Degree 60
7.25 Client Process CPU Usage Per Privacy Degree 61
7.26 Server Process CPU Usage Per Privacy Degree 61
7.27 Blockchain Process CPU Usage Per Privacy Degree 61

8.1 Round Execution Flow With Split-CNN Model 63
8.2 Split-CNN Smart Contracts Extension Class Diagram 63
8.3 Model Accuracy Per Number of Clients 65
8.4 Network Traffic Per Round Per Number of Clients 66
8.5 RAM Usage Per Number of Clients . 68
8.6 CPU Usage Per Number of Clients . 68

vi LIST OF FIGURES

List of Tables

3.1 Blockchain Platforms and Consensus Algorithms 17
3.1 Blockchain Platforms and Consensus Algorithms (Continued) 18
3.2 Data Distribution, Data Partition and Datasets 19

5.1 CNN Model Parameters of the Horizontal FL 32
5.2 Split-CNN Dual-Headed Model . 32
5.3 Hardware and Software Specifications of Experiments 33

6.1 Execution Time, Transaction Cost, and Latency of Consensus Algorithms 36

7.1 Execution Time, Transaction Cost, and Transaction Latency Per Partici-
pant Selection Algorithm . 42

7.2 Execution Time, Transaction Cost, and Transaction Latency Per Scoring
Algorithm . 46

8.1 Execution Time, Transaction Cost, and Transaction Latency Per Number
of Clients . 65

9.1 Experiment Configurations and Accuracy 71
9.1 Experiment Configurations and Accuracy (Continued) 72

vii

Chapter 1

Introduction

Machine Learning (ML) has revolutionized the way we use and work with data, opening
ways to new techniques and explorations. ML models can be powerful tools to predict
things that would otherwise require high amounts of human effort. For example, an
image recognition model may be created to help medical professionals diagnose diseases.
Similarly, a model may be created to detect abnormal heart rate or walking patterns based
on smart watch sensor data. Even though models such as these can be very helpful, they
have to be trained with high amounts of good quality data in order for the model to
perform accurately [30]. To address this issues, there are techniques that allow multiple
parties to collaboratively train the same models.

In 2016, Google researchers attempted to build communication-efficient deep neural net-
works in decentralized settings [51]. The result of this work was the introduction of a
new way of collaboratively training Machine Learning models, which they termed Fed-
erated Learning. Federated Learning (FL) allows multiple clients, in different locations,
to collaborate on the training of a global Machine Learning model without sharing their
own data with each other. Instead of sharing the raw data, clients only share model
parameters, such as weights. This brings some benefits. The first benefit is that, by not
sharing raw data, models can preserve data privacy, allowing them to be trained on sen-
sitive data. In addition, since model parameters are usually much smaller than the raw
data, this leads to less data being transported over the networks. Finally, since the data
is distributed among different clients, a single powerful server is not required to train the
model, as usually training models with smaller amounts of data is less computationally
expensive.

1.1 Motivation

Currently, most FL networks include a central server that coordinates the federated
training process and aggregates the model weights from each of the clients into a single
model. This central coordinator is a single point of failure in the network, since it is always
required to be online and behave correctly [40, 83]. To address this, Blockchain-based
Federated Learning (BFL) techniques have been proposed.

By combining Blockchain to Federated Learning, not only can the central orchestrator

1

be eliminated, but also the federated training process can be made more transparent. In
the blockchain, each transaction is recorded in the distributed ledger. These transactions
record information such as local updates, scores, aggregations, among others. Having
this information in a public ledger allows for a transparent training process and reward
distribution [40]. The following are some aspects that Blockchain can bring to Federated
Learning when combined:

• Traceability and Auditability. Due to the structure of the blockchain, it is possible
to trace transactions to their original source, which can be useful for auditability
purposes [7, 83].

• Data Immutability and Persistency. Once transactions are added to the distributed
ledger, it is nearly impossible to revert them or change their information [7, 70].
This ensures that data is not changed and it can be retrieved after the fact.

• Decentralization. The involvement of a central orchestrator is eliminated and the
processing of the aggregation is replaced by multiple servers [48, 59, 70, 83]. This
improves the resilience and availability of the system.

• Authentication. Blockchain ensures the authentication of data and messages due
to the verification mechanisms in place, such as the usage of private keys to sign
transactions [70].

Blockchain platforms can implement different consensus algorithms, which can lead to
very different resource consumption [60], as well as different degrees of latency [3]. Two
other important aspects in BFL systems are the participant selection and the scoring
algorithms. While the former indicates how the participants are chosen to submit their
updates in each round, the latter aids on scoring each client’s model update in order to
identify which ones are the best and should be included in the final aggregation. All this
algorithms influence the accuracy, convergence, and resource consumption. At the same
time, each algorithm performs differently with different amounts of devices, as well as
with different degrees of privacy, leading to different accuracy results, as well as resource
consumption.

1.2 Problem Statement

To the best of our knowledge, there is very little literature on the impact of different
algorithms of BFL systems, namely consensus, participant selection and scoring algo-
rithms, on the execution time, accuracy, convergence, communication and computation
costs of the system. In addition, there is no research on how different scoring algorithms
are impacted in terms of the aforementioned aspects when different amounts of clients
and privacy degrees are used. With BFL being increasingly adopted in IoT networks,
where low powered devices with low resources are the norm, it is important to ensure the
system consumes the least amount of resources, especially regarding the clients.

Additionally, even though there is literature on designing BFL frameworks, none of them
are open source, or modular enough to support different algorithms. Such framework
could be used to empower future research on new algorithms, as well as help those who
want to implement their own BFL system.

2 Introduction

1.3 Research Questions

Taking into account the motivation and problem statement, this work will focus on an-
swering the following main research question:

What is the impact of different consensus, participant selection and scoring algorithms
in a Blockchain-based Federated Learning system on execution time, convergence and

accuracy, as well as communication and computation costs?

This research question can be further sub-divided into four sub-questions:

1. How to design a modular framework that allows easy customization of different algo-
rithms related to different parts of the Blockchain-based Federated Learning system?

2. How do consensus, participant selection, and scoring algorithms influence execu-
tion time, convergence, accuracy, and communication and computation costs of the
system?

3. How does the number of clients, as well as degrees of privacy impact the different
scoring algorithms?

4. How can we build a Blockchain-based Federated Learning framework that supports
different data partition formats, such as vertical and horizontal?

1.4 Contributions and Outline

The contributions of this thesis are as follows: (i) design and implementation of the
first open-source modular framework for BFL that can be easily adapted to support new
scoring, aggregation, and privacy algorithms. This framework can be used to empower
future research; (ii) the first comparative study of how different algorithms of BFL,
namely consensus, participant selection, and scoring algorithms, impact the execution
time, transaction costs, transaction latency, model accuracy and convergence, commu-
nication costs, and computation costs of the system; (iii) the first comparative study of
how the number of clients and different degrees of privacy impact the accuracy, execution
time and communication and computation costs of different scoring algorithms; and (iv)
a proof-of-concept of a Blockchain-based Vertical Federated Learning.

The remainder of the thesis is structured as follows. Chapter 2 provides definitions and
fundamental concepts about BFL, as well as background information of the algorithms
and mechanisms that will be explored. Chapter 3 reviews the existing work regarding
algorithms and mechanisms used in BFL systems. Chapter 4 explains the design and
implementation of the framework. Chapter 5 provides information regarding the ex-
perimental setup of the experiments. Chapter 6 provides the impact analysis of using
different consensus algorithms. Chapter 7 provides the impact analysis of using different
scoring algorithms, as well as how they behave with different number of clients and pri-
vacy degrees. Chapter 8 provides analysis of the proof of concept of Vertical Federated
Learning applied in a BFL system. Finally, Chapter 9 discusses the results, contributions
and provides directions for future works.

3 Introduction

Chapter 2

Background

This chapter gives an overview of the fundamental concepts and the algorithms important
for this thesis.

2.1 Machine Learning

Machine Learning is a sub-field of Artificial Intelligence that builds models based on sta-
tistical and algorithmic concepts in order to detect relevant patterns based on previously-
seen data [27]. There are four categories of learning, i.e., supervised, semi-supervised,
unsupervised and reinforcement learning [73]. Each category performs different types of
tasks on different types of data. This study focuses only on supervised learning.

In supervised learning, algorithms build mathematical models from labeled data, which
is data in the format (X, y), where X is the input sample and y is the expected output,
or label. During training, algorithms provide the model with the input samples and
improve the model by comparing its output with the expected outputs (the so called
ground truth). Supervised learning problems can be divided into regression problems, if
the output is a continuous variable, or classification problems, if the output is a discreet
variable [73].

2.1.1 Federated Learning

Federated Learning is a ML technique, in which different distributed clients collabora-
tively train a model under the supervision of a centralized server. Clients are distributed
heterogeneous devices with their own computing resources and they are responsible for
producing and maintaining their own data [41]. The data is assumed to be non indepen-
dent or non identically distributed (non-iid).

Since clients are heterogeneous and distributed, having different communication costs
and response times are normal. In addition, some clients may operate under constrained
networks with either low or limited bandwidth. Therefore, it is important that new FL
techniques ensure that communication and resource usage is minimized.

During the training process, the raw data never leaves the clients and only the model
parameters, such as model weights, are exchanged with the server in order to compute

4

the global model. However, model weights can be target of inference attacks and leak
secret information [88]. Consequently, new Federated Learning architectures and algo-
rithms must be compatible with techniques that guarantee privacy, such as differential
privacy, homomorphic encryption, secure multiparty computation or other cryptographic
protocols [88].

After each round of training, the central server aggregates the local updates. Usually,
this is done using a mathematical formula, for example, Federated Averaging (FedAvg)
[51], which calculates the weighted average of all clients.

2.1.2 Categories of Federated Learning

According to [65, 88], with respect to the different data partition among the clients, the
federated Learning techniques can be broadly divided into three main categories, i.e., (i)
horizontal, (ii) vertical, and (iii) federated Transfer Learning. We focus on the first two
categories.

In Horizontal Federated Learning (HFL), clients with the same data structure collaborate
to build a single model. In other words, the different data sets in the different clients
share the same feature space, but not the sample space. For example, two banks branches
operating in different cities have similar businesses (feature space), but different clients
(sample space). The architecture of HFL, depicted in Figure 2.1, consists of multiple
clients training a model, while the central server performs the aggregation of all local
updates.

In Vertical Federated Learning (VFL), clients share an intersecting sample space, but dif-
ferent feature spaces. For example, two different banks with different products operating
in the same city have a similar client base (sample space), but different information about
each client (feature space). The architecture of VFL, depicted in Figure 2.2, is similar
to the one of HFL. However, it requires an additional step, calculating the Private Set
Intersection (PSI) [84], since the clients do not share the exact same sample space. PSI is
a protocol by which multiple clients can calculate the common samples without sharing
their raw data [84].

2.2 Blockchain

A blockchain is an immutable distributed ledger, which is a database of transactions main-
tained by several computers, also known as nodes, linked through a peer-to-peer network.
The concept of blockchain was first introduced by Stuart Haber and W. Scott Stornetta
in 1991 [76], being popularized by Satoshi Nakamoto in 2008 with the introduction of the
cryptocurrency Bitcoin [57].

In a blockchain, the data is structured as blocks, as can be seen in Figure 2.3. Each
block contains a certain number of transactions and links to the previous block via a
cryptographic hash, forming a chain. This guarantees fidelity and trust without requiring
a trusted third party, which is why it is called a trustless system. In addition, since the
record is immutable and decentralized, all transactions can be transparently viewed by
others.

5 Background

Server

Communication Layer

3

......

2
4

1 Train Local Model

2 Send Local Updates

3 Aggregation of Updates

4 Receive Global Updates

Client

Training

Data

Client

Training

Data

Client

1

Training

Data

Figure 2.1: Horizontal Federated Learning Architecture

2 Train Local Model

3 Send Local Updates

4 Aggregation of Updates

5 Receive Global Updates

1

1 Private Set IntersectionServer

Communication Layer

4

......

3
5

Client

Training

Data

Private Set
Intersection

Client

Training

Data

Private Set
Intersection

2

Client

Training

Data

Private Set
Intersection

Figure 2.2: Vertical Federated Learning Architecture

6 Background

Hash: 6kmei

Previous: 0000

Hash: sp46j

Previous: 6kmei

Hash: bu7ta

Previous: sp46j

Hash: hj9q3

Previous: bu7ta

Hash: 0000

Genesis Block

Figure 2.3: Blockchain Representation

As mentioned beforehand, a blockchain is maintained by several nodes in a peer-to-
peer network. As transactions come in, nodes compete in order to generate the next
block. Since it is a decentralized process, multiple nodes will try to create the next
block of the chain in parallel. In order to reach an agreement between the nodes, a
consensus algorithm is used. The consensus algorithm allows to reach an agreement
between multiple decentralized nodes without requiring a singular node to be in charge.

Public
Blockchains

Hybrid
Blockchains

Private
Blockchains

Consortium
Blockchains

Permissionless Permissioned

Figure 2.4: Blockchain Types

Figure 2.4 illustrates four different types of blockchain, i.e., public, private, consortium,
and hybrid. Some are permissionless, which means that anyone can join the network,
while some are permissioned, which means that only allowed parties can join the network.

• Public Blockchains are permissionless and therefore anyone can join and participate
in the network. There is no central authority.

• Private Blockchains, in contrary to the public blockchains, private blockchains are
permissioned with a single central authority. They can only be accessed by allowed
parties and they are usually used within organizations.

• Consortium Blockchains, similarly to the private blockchains, are permissioned.
However, instead of being controlled by a single authority, they are controlled by a
group of different authorities.

• Hybrid Blockchains have features of both permissioned and permissionless blockchain
systems. They, on one hand, are usually controlled by a single authority, while on
the other hand, have a mixed usage of permissioned and permissionless protocols
running in parallel for different use cases.

7 Background

2.2.1 Smart Contracts

Smart contracts [82] are small computer programs that live within the blockchain and
automatically run when predetermined conditions are met. As they live in the blockchain,
they are trustless and are typically used to automate the execution of agreements. This
way, every party involved in the agreement is certain that it will be honored once the
conditions of the agreement are met. Some blockchain platforms, such as the Ethereum
[87], provide functionality for smart contracts.

2.2.2 Blockchain Platforms

As explained in section 2.2, blockchain platforms allow developers to build applications
on top of the blockchain technologies. Even though all platforms are based on the concept
of blockchain, they all have different characteristics and restrictions, as well as different
sets of features.

As it can be seen in Table 3.1, around half of the implementations used an already existing
platform, where the remaining preferred to implement their own blockchain platform.
Among already existing platforms, Ethereum is the most popular. When implementing
a custom platform, it is easier to overcome certain restrictions such as limits on data per
block [9, 35].

2.2.3 Consensus Algorithm

The consensus algorithm is one of the most important components of a Blockchain plat-
form. Consensus is the process of reaching an agreement on a single value among different
distributed processes [68]. These algorithms are designed to be reliable even on networks
that have unreliable blockchain nodes. In blockchain, the consensus algorithm is used to
reach consensus on the next block of the chain [66]. The following consensus algorithms
will be compared in our work:

• The Proof of Work (PoW) [26] consensus algorithm was first introduced in the
context of blockchain platforms by Satoshi Nakamoto in Bitcoin [57]. It works by
means of computation effort proofs, where a set of virtual miners race in solving
a complex, yet feasible, mathematical problem. The winner of the race generates
a cryptographic proof based on the solution of the problem that can be easily
verified by others. Then, the winner adds a new block containing the newly verified
transactions to the blockchain. In addition, the winner is rewarded according to
some pre-determined rules.

On the one hand, it is a simple algorithm, for which proofs are hard to create,
but easy to verify [40]. Not only is it robust and proven to work, but the cost of
attacking a PoW blockchain is extremely high [40]. For an attack to be successful,
it needs to control more than half of the network [40]. On the other hand, PoW
consumes extreme amounts of energy and it is hard to scale [20, 40, 60].

• The Proof of Authority (PoA) [77] consensus algorithm is a reputation-based con-
sensus algorithm that is most commonly used in private blockchain networks. It
works by having a set of validator nodes that are responsible for validating new
transactions. In order to ensure the correctness of the validator nodes, they have to

8 Background

stake their own reputation. In addition, the validators are known trusted entities
that are manually chosen by the network owner.

On the one hand, PoA provides high throughput and high scalability [2]. On the
other hand, the main criticism of PoA is that it is usually has a small number of
validators, that are manually chosen. Therefore, it has a lesser degree of decentral-
ization. Consequently, PoA is not as common in public blockchain networks as it
is for private networks [2].

• The QBFT Byzantine Fault Tolerance (QBFT) [54] consensus algorithm is similar
to the Practical Byzantine Fault Tolerance (PBFT) [10] algorithm, which is a three-
phase protocol that allows a network with 3f + 1 nodes, where f is the maximum
amount of faulty nodes, to reach consensus. The different between QBFT and
PBFT is that in the former the set of validators is dynamic, while in the latter, it
is static. The network reaches a consensus once 2f + 1 nodes agree.

One the one hand, QBFT allows for high consensus efficiency in high throughput
networks [40]. On the other hand, it will stop working properly if only 33% or less
blockchain nodes are running and it can also have high communication costs due
to its three-phase protocol nature [40].

2.3 Blockchain-based Federated Learning

Recently, the idea of applying blockchain to FL has emerged. This is motivated by the fact
that FL architectures are highly dependent on a single central server, leading to a central
point of failure, that can be either overloaded or compromised. With blockchain, the cen-
tral server can be replaced by multiple decentralized servers that operate the blockchain
nodes. In addition, blockchain can provide authentication, traceability, auditability and
data preservation.

As stated in [83], so far three different main architecture groups have been proposed for
BFL systems: Fully Coupled BFL, Flexibly Coupled BFL, and Loosely Coupled BFL. In
Fully Coupled BFL, the distributed clients are the only devices in the network and act as
both clients and servers, performing the training and aggregation, as well as running the
blockchain nodes. In Loosely Coupled BFL, the central server still exists and blockchain
is only used to manage the reputation of clients. Flexibly Coupled BFL provides a middle
ground between both, where there are servers and clients in the network. The servers
are responsible for maintaining the blockchain nodes and use the blockchain to store
information such as aggregations, scores, among others. The architecture is depicted in
Figure 2.5.

2.3.1 Participants Selection Algorithms

Participant selection algorithms are algorithms that are used to decide how many and
which clients are selected to participate in each round. There are two main participant
selection algorithms:

• Random selection, where both the number of participants, as well as the participants
themselves are selected randomly before the start of each round.

9 Background

Server

Smart Contract

Blockchain

Li
ve

s
In

3

......

2
4

Client

Training

Data

Client

Training

Data

Client

1

Training

Data

1

2 Send Local Updates

4 Receive Global Updates

Aggregation of Updates3

Train Local Model

Server

...

Server

Smart Contract

Blockchain

Li
ve

s
In ...

...

Consensus

Consensus

Figure 2.5: Blockchain-based Federated Learning Architecture

• First-come first-served, where the number of participants n is chosen randomly
before the start of each round. Then, the first n clients to take initiative to join the
round will participate.

2.3.2 Scoring and Aggregation Algorithms

During the training process, each client produces its model parameter updates and com-
municates them to the servers through the blockchain. These parameters are then ag-
gregated. However, there are different security aspects that should be taken into account
here as the parameter updates creates a possibility for performing different attacks such
as poisoning attacks [69] and plagiarism attacks [48].

• Poisoning attacks happen when clients willingly send parameter updates that de-
crease the quality of the model. They may have been generated using an unreliable
data set, or done on purpose. To avoid other participants to provide unreliable
data to degrade the model performance, there are dynamic verification techniques
[83, 92] that allow to ignore low quality data.

• Plagiarism attacks happen when lazy clients plagiarize other client’s models updates
without really training their models. These attacks can be addressed via pseudo-
noise algorithms [59]. In addition, plagiarism attacks within the same round can be
avoided by secure communication methods, such as differential privacy [48], through
which plagiarism attacks where a client reuses parameters from a previous round
can be avoided by simply comparing the different client’s updates.

To mitigate the poisoning and plagiarism attacks, different scoring algorithms were de-
veloped. Scoring algorithms are used to give each client, or its model update, a score.
Based on this score, the submission may have more or less impact on the aggregation, if
any at all. In addition, scores are used for reward mechanisms in systems where public

10 Background

models are being trained and clients need some sort of incentive to keep participating
[5, 32, 50, 78]. In this section, we explain briefly how each of the scoring algorithms works
and if they influence the aggregation algorithm.

2.3.2.1 BlockFlow Score

The BlockFlow algorithm [55] work by giving each submission a score and, based on that
score, do the aggregation. In this algorithm, each client a gives each other client k a score
sa,k ∈ [0.0, 1.0], which can be based on a’s validation set accuracy using k’s submission.
Based on this scores, a median score and an evaluation quality scores are calculated. The
overall scores will then be the minimum between the scaled median score and the scaled
least accurate evaluation score.

With the final scores, the aggregation is calculated using the scores as weights in the
Federated Averaging algorithm, instead of the number of samples. More details regarding
the algorithm specifics can be found in the original paper.

2.3.2.2 Marginal Gain Score

The Marginal Gain algorithm [8], also known as contributivity score, is calculated by
summing the marginal performance gains of all the client’s model updates so far. Similarly
to BlockFlow scoring, each client has to give each other clients’ submission a score. The
formula of the client c’s submission score S(c) is calculated as follows:

S(c) =
∑
r

(v(Mr)− v(M c
r+1)) (2.1)

, where v is a performance metric, such as accuracy, and m is the model and r the
round. These scores are used as weights in the Federated Averaging Algorithm. If the
submission’s score is equal or below 0, the submission is ignored.

2.3.2.3 Multi-KRUM Score

The Multi-KRUM algorithm [64, 74, 91] works by giving each submission a score and
eliminating dubious submissions based on their score. This scores are calculated by
the servers and are based on the Euclidean distances between the different client c’s
submissions. The score of each client is denoted as S(c) and calculated as follows:

S(c) =
∑
c→k

||∆wc −∆wk||2 (2.2)

, where ∆w is a submission and c → k are the clients k whose submission ∆wk are the
R − f − 2 closest to ∆wc. In this formula, R is the total number of submissions, while
f represents the amount of Byzantine clients. After giving each submission a score, the
R − f clients with the lowest scores are chosen and the remaining are rejected. Please
note that Byzantine fault tolerant systems behave correctly when no more than f out of
3f + 1 replicas fail.

11 Background

2.3.3 Privacy Mechanisms

Even though FL is already more secure than centralized ML in the sense that the raw data
is never shared, the model weights can be exploited via inference attacks [88]. Inference
attacks are attacks in which the weights are used to reverse-engineer the original data.

Additionally, in BFS systems, the weights are visible to all other client or participant
since the blockchain provides an immutable, traceable and auditable record of the whole
process. Consequently, it is important to reduce the surface for attacks when it comes to
the model parameters.

2.3.3.1 (Local) Differential Privacy

Differential Privacy (DP) [80] is a set of mathematical constrains that algorithms must
observe in order to ensure a certain degree of privacy. In other words, some data is
differentially private if, by looking at it, we cannot retrieve identifiable information about
the original source.

Local Differential Privacy [48, 58] is a model of Differential Privacy that ensures a specific
degree of privacy, usually by using a randomized algorithm A to apply noise to the original
data [84]. We say that A provides ϵ-local differential privacy if, and only if, for all subsets
S of the image of A, and for all pairs of private data x and x′:

Pr[A(x) ∈ S] ≤ eϵ × Pr[A(x′) ∈ S] (2.3)

, where the probability is taken from the randomized algorithm. The lower the ϵ, the
higher the degree of privacy.

12 Background

Chapter 3

Related Work

In Blockchain-based Federated Learning (BFL) systems, there are different algorithms
that need to be taken into consideration when building the system. In this chapter, we
go over these algorithms and their variations used in the literature in order to find the
gap that we will try to fill in this thesis.

3.1 Consensus Algorithms

As it can be seen from Table 3.1, various consensus algorithms have been used for BFL
systems. Below is a summary of each of these consensus algorithms. In most works,
authors chose to use an already existing consensus algorithm, such as Proof of Work
[23, 25, 35, 55, 56, 66, 69, 86, 90], Proof of Stake [12, 16, 25, 45–47, 56, 91] and Proof of
Authority [37, 50, 71, 89]. In addition, in the majority of the existing works that used
an already existing consensus algorithm, the BFL system is built on top of an already
existing blockchain platform.

There are works such as [38, 44, 68] that integrate the consensus algorithm of the
blockchain with the model training process in order to preserve energy and resource
consumption [42]. However, they are either not publicly available or cannot be easily
applied to already existing blockchain platforms because they require internal changes.

Finally, even though there are some works that analyze the resource and energy con-
sumption of blockchain consensus algorithm in the context of BFL systems, there is a
lack of analysis for already existing consensus algorithms. This is also mentioned by sur-
vey papers such as [59, 86]. Therefore, we intend to fill in the gap by providing an impact
analysis of different consensus algorithms on already existing blockchain platforms.

3.2 Model Parameter Storage

Another important component of BFL systems is the location, where the model param-
eters are stored in order to be shared with the servers. According to the literature, the
model parameters may either be stored on-chain, i.e., in the blockchain itself, or off-chain,
i.e., in a separate storage provider [92].

13

With the on-chain storage [9, 29, 35–37, 71, 85, 89], the smart contract stores the model
parameters itself, which means that the parameters themselves will be stored in the
blockchain. However, most blockchain platforms have a limit on how large a block can be
and, consequently, the amount of data that can be stored per contract is limited [37]. In
these cases, smart contracts are chunked, i.e., a single contract is split into many different
contracts that hold smaller chunks of the parameters [71]. In addition, this allows for the
new model parameters to be directly calculated through the smart contract as the values
are directly accessible [37].

With the off-chain storage [4, 8, 50, 53, 55, 61, 64, 91], the smart contract holds a
reference to the model parameters in some external (decentralized) storage systems. In
this case, the new model parameters cannot be calculated directly on the smart contract,
as the smart contracts have limited functionality and are not able to download external
information during execution. Instead, a set of devices perform the aggregation in parallel
and submit their aggregation. Through the smart contract, the majority of the devices
must agree on what is the next global aggregation. Whether these devices are the servers
or the clients, it all depends on the architecture of the system.

Even though most implementations prefer an on-chain storage, these implementations
also use custom blockchain implementations [9, 29, 35, 36, 85], which means that they
can implement a platform that has different restrictions on how much data a smart
contract can handle. When it comes to using already existing blockchain platforms such
as Ethereum, most implementations prefer off-chain storage using a system such as the
InterPlanetary File System[4, 8, 50, 55, 64, 91].

3.3 Participants Selection Algorithms

Usually, only some clients are asked to submit a model update in each round. The process
of choosing the clients that participate in each round can vary and have different costs.
In most works, such as [42, 64, 89], the number of clients and which clients specifically
participate are chosen randomly. In other systems such as [24, 29], clients are allowed to
take initiative, operating in a first come, first served basis. The survey [59] mentions that
there is a lack of analysis on how the selection of the participants impacts the accuracy
of the BFL system, as well as the communication and computation costs.

3.4 Scoring and Aggregation Algorithms

Different solutions can be found in the literature regarding verification techniques. The
authors of [16] created a committee-based verification mechanism. To implement it, they
deploy a verification smart contract on the blockchain, which periodically elects different
clients as committee members. Then, the committee is responsible for voting if the
submitted model updates are valid or not.

The authors of [50] implement a verification algorithm based on the trend of the validation
error accuracy. To implement it, the model updates of each client are validated using a
public validation data set known to both servers and clients. The result of this validation
also influences the reward distribution.

14 Related Work

Scores-based systems [8, 64, 74, 91], also known as reputation-based systems, are, by
far, the most common among the literature and also the only ones that can be applied
to already existing blockchain platforms. These work by giving clients with consistently
high quality data and updates higher amounts of points. Then, the updates with less
points are either rejected, or they have a smaller influence on the aggregation.

In most of these works, as also noted by [59, 83], the costs of scoring algorithms have
not been considered. It is important to understand the trade-off between communication
and computation costs, and the usage of the different scoring algorithms. The authors
of [83] also mention that there is a lack of comparison of the different security models of
the system when using different scoring algorithms.

3.5 Privacy Mechanisms

The majority of the reviewed works did not mention which privacy mechanism they used.
However, we found Differential Privacy [55, 64, 91] to be the most common mechanism,
followed by the Homomorphic Encryption [50, 85]. In addition, the authors of [59] also
point out the lack of consideration for how privacy mechanisms may impact the system,
both in terms of accuracy, as well as resource consumption. From our review, we can
confirm that this is still the case.

3.6 Other Remarks

In addition, there are several works designing BFL frameworks [17, 50, 61, 83], but very
few of them provide the source code or build a framework that is intended to be used by
others. Providing the source code is extremely important when it comes to reproducibility
and verification, so that others can analyze it and do further research using it.

Finally, as it can be seen in Table 3.2, only [56] discusses that it is theoretically possible
to implement Vertical Federated Learning in a BFS setting. However, it provides no
implementation or design details.

3.7 Conclusions

From the literature review, we can draw the following conclusions. Firstly, there is a clear
lack on how different components of a BFL system, such as consensus algorithms, scoring
algorithms, number of clients, impact the accuracy, communication and computation
costs of the system. Consequently, this work intends to fill in this gap by providing a
detailed analysis on how some of these algorithms impact execution time, transaction
costs, transaction latency, model accuracy and convergence, communication costs, and
computation costs of the system.

Secondly, even though there are many works on designing BFL frameworks, very few are
released to the public, or modular. We, therefore, will work on designing and implement-
ing a modular BFL framework that can be easily changed to support new algorithms and
will be available to the public to empower future research.

15 Related Work

Lastly, to the best of our knowledge, there is only one work [56] that discusses that it
is theoretically possible to implement Vertical Federated Learning in a BFS setting, but
provides no practical solution.

16 Related Work

P
ap

er
P
la
tf
or
m

C
on

se
n
su
s

E
th
er
eu
m

H
y
p
er
le
d
ge
r

E
O
S

M
u
lt
iC
h
ai
n

C
u
st
om

P
oW

P
oA

(p
)B

F
T

P
oS

P
oF

L
P
oQ

C
om

m
it
te
e

O
th
er

[5
5]

✓
✓

[9
0]

✓
✓

[3
7]

✓
✓

[7
1]

✓
✓

[1
6]

✓
✓

[6
7]

✓
✓

✓
[7
8]

✓
[6
4]

✓
[1
7]

✓
✓

[4
]

✓
[6
1]

✓
[8
]

✓
[8
9]

✓
✓

[5
3]

✓
[5
0]

✓
✓

[3
5]

✓
✓

[1
2]

✓
✓

[4
5]

✓
✓

[4
4]

✓
✓

[8
5]

✓
✓

[9
]

✓
✓

[5
]

✓
✓

[2
4]

✓
✓

T
ab

le
3.
1:

B
lo
ck
ch
ai
n
P
la
tf
or
m
s
an

d
C
on

se
n
su
s
A
lg
or
it
h
m
s

17 Related Work

P
ap

er
P
la
tf
or
m

C
on

se
n
su
s

E
th
er
eu
m

H
y
p
er
le
d
ge
r

E
O
S

M
u
lt
iC
h
ai
n

C
u
st
om

P
oW

P
oA

(p
)B

F
T

P
oS

P
oF

L
P
oQ

C
om

m
it
te
e

O
th
er

[2
9]

✓
[3
6]

✓
[4
8]

✓
[4
9]

✓
[8
6]

✓
[6
9]

✓
[5
6]

✓
✓

[6
6]

✓
✓

[2
3]

✓
[2
5]

✓
✓

✓
[9
1]

✓
✓

[3
4]

✓
[4
6]

✓
[4
7]

✓
[6
8]

✓
[1
1]

✓
[7
4]

✓
[6
3]

✓
[7
5]

✓
[9
3]

✓
[3
2]

✓
[4
2]

✓

T
ab

le
3.
1:

B
lo
ck
ch
ai
n
P
la
tf
or
m
s
an

d
C
on

se
n
su
s
A
lg
or
it
h
m
s
(C

on
ti
n
u
ed

)

18 Related Work

I: IID, N: Non-IID, H: Horizontal, V: Vertical

Data Distribution Data Partition Dataset

[4] I H Breast Cancer Dataset
[5] N H
[9] N ? ?
[11] I H MNIST, CIFAR10
[12] ? H MNIST
[16] I H MovieLens
[17] I, N ? ?
[23] I H MNIST
[24] ? H CIFAR10
[25] I H MNIST
[29] ? H ?
[33] I H MNIST
[34] I H MNIST
[35] I H ?
[36] N H MNIST
[37] N H MNIST
[42] I H FEMNIST
[44] I H Reuters, 20News
[45] I H Uber Pickups, MNIST
[46] I H MNIST
[47] I H CIFAR10
[48] ? H ?
[49] I, N H ?
[50] ? H MNIST
[53] N H MNIST, CIFAR10
[55] ? H ?
[56] I, N H,V ?
[61] I, N H ?
[63] I H MNIST
[64] N H ?
[66] I H ?
[67] I H CICIDS 2017
[68] I H CIFAR10
[69] I, N H MNIST, CIFAR10
[71] I H NYC 2018 Taxi
[75] I H LFW, MNIST, CelebA, CASIA
[85] ? H MNIST
[86] ? H ?
[89] I H MNIST
[90] I H Air-Conditioning
[91] I H MNIST
[93] I H ?

Table 3.2: Data Distribution, Data Partition and Datasets

19 Related Work

Chapter 4

Framework Design and Implementation

In this chapter, we provide detailed information regarding the design of our modular
framework, as well as its implementation.

4.1 BlockLearning Framework’s Design

The modular framework, to which we called BlockLearning, is designed in such a way
that modules can be added, as well as removed or changed, easily. In this framework, the
devices, identified by the address of their account in the blockchain, can be classified into
three categories: trainers, aggregators and scorers. Additionally, the entity that deploys
the contract and is responsible for starting and terminating the rounds is called model
owner.

A device, i.e., a client or a server, can be categorized as one or more categories. For exam-
ple, BlockFlow’s scoring algorithm is executed by the clients, which are then categorized
as trainers and scorers, while the servers are categorized as aggregators. In contrast,
Multi-KRUM is executed by the servers, which are then categorized as aggregators and
scorers, while the clients are categorized as trainers. By allowing each device to play
more than one role, the framework provides flexibility to support different architectures
and algorithms.

Round

Initialization

by owner

Updates

Submission

by trainers

Updates Score

Submission

by scorers

Aggregations

Submission
by aggregators

1 2 3 4
Round

Termination
by owner

5

Figure 4.1: BlockLearning’s Execution Flow

The framework supports a modular sequential flow represented in Figure 4.1. This flow is
based on the current literature and the steps required to perform the Federated Learning
process via the blockchain. The steps are explained below:

1. The model owner initializes the round. During the round initialization, depending
on the participant selection algorithm, the trainers that will participate may have
been selected already, or not.

20

2. The trainers retrieve the information such as the global weights from the last round
and train the model using their local data. Then, the trainers submit their model
updates.

3. If a scoring algorithm is enabled, the scorers retrieve the updates and calculate the
scores. Then, they submit their scores.

4. The aggregators retrieve the model updates and execute the aggregation algorithm
and submit the aggregation results to the blockchain.

5. Finally, the model owner sends a transaction to the blockchain in order to terminate
the round. At this point, the smart contract checks if the majority of the aggregators
agreed on the aggregation. If so, the round is marked as terminated. Otherwise,
the round fails, indicating that the aggregators did not reach an agreement, which
may indicate that some of the aggregators are compromised.

In the last step of the execution flow, the smart contract checks if the majority of the
aggregators agree on the aggregation. The majority is defined by at least 50%. Therefore,
the framework offers a 50% threat model. However, the threat threshold can be changed,
changing the threat model.

4.1.1 Structure and Modules

The framework is divided into three main software components: the smart contracts, the
library, and the testbed. The structure of the framework, as well as its components and
their corresponding modules, is depicted on Figure 4.2. Each of the components plays a
different role in the overall system in order to support the logical flow shown in Figure 4.1.
In the following subsections, each of the components will be explained in more detail.

Testbed

Library

Aggregation
Algorithms

Scoring

Algorithms

Privacy

Algorithms

Weights Storage
and Retrieval

Smart Contract

Bridge

Trainer Class Scorer Class Aggregation Class

Smart Contracts

Registration
Management

Round Information
and Control

Update Submission
and Retrieval

Scores Submission
and Retrieval

Aggregation
Submission and

Retrieval

Client

Process

Server

Process

Federated Learning

Setup and Deployment

Blockchain

Setup and Deployment

Statistics and
Metrics

Collection

Figure 4.2: BlockLearning’s Structure and Modules

21 Framework Design and Implementation

4.1.1.1 Smart Contracts

The first component of the framework is the smart contracts. The smart contracts live
on the blockchain and are the main means of communication between FL clients and
servers. In addition, the smart contracts hold information regarding the current status
of the round, as well as the updates, scores, aggregations, among others. The smart
contracts provide the following functionality:

• Round Information and Control : the smart contract must provide information on
whether the round is ongoing and which phase, i.e., scoring, aggregation, or ter-
mination phase, it is in. It must allow for flexibility such that new phases can be
added in the future, such as the backpropagation confirmation phase we need for
our vertical model. In addition, it must allow for rounds to be started and marked
as terminated. Round phase advancements are defined through pre-defined condi-
tions that, once met, automatically move the round to the next phase. For example,
after all updates are received, the smart contract should move to the next phase.

• Registration Management : the smart contract must allow devices to register them-
selves as trainers, aggregators, or scorers in the system. Finally, the smart contract
should provide information about which devices participate in each round.

• Update Submission and Retrieval : the smart contract must allow trainers to submit
their updates, which must include a pointer to the model weights and the amount
of data points that were used to train the model. In addition, it can include the
training accuracy and testing accuracy for each individual trainer. The submissions
must be accessible.

• Scores Submission and Retrieval : the smart contract must allow scorers to submit
their scores. It must be possible to know which scorer scored which update and
they must be accessible.

• Aggregation Submission and Retrieval : the smart contract must allow aggregators to
submit the aggregations, which contain a pointer to the weights. The aggregations
must be accessible.

4.1.1.2 Library

The second component of the framework is the library. The library encodes the algo-
rithms, utilities, and building blocks necessary to implement the scripts that run on the
clients and the servers. It must include:

• Aggregation, Scoring and Privacy Algorithms : implementation of the different al-
gorithms. For each algorithm type, a common interface must be implemented, such
that adding new algorithms is easy and simple and they are interchangeable.

• Weights Storage and Retrieval : utilities to load and store weights on the decentral-
ized storage provider. These must also provide an interface in order to make it easy
to change the storage provider by providing a different implementation.

• Smart Contract Bridge: a contract class that provides an interface to the smart
contract that lives on the blockchain. With this class, it should be possible to call

22 Framework Design and Implementation

the smart contract functions as if they were local functions.

• Trainer, Scorer and Aggregator Classes : a class per each device category. This class
must register the devices as their category upon initialization. It must also provide
methods to execute the training, scoring and aggregation tasks, respectively.

4.1.1.3 Testbed

The third component of the framework is the testbed. The testbed provides the platform
to conduct the experiments in a reproducible way, for instance by setting static seeds for
randomness. The testbed must include:

• Client, Server and Owner Scripts : scripts that will be run at the clients, the servers,
and at the model owner, respectively. These scripts will use the library in order to
perform the right tasks according to which algorithm is being used.

• Federated Learning Setup and Deployment : scripts and tools to easily deploy the
client and server machines in a test environment, such as containers.

• Blockchain Setup and Deployment : scripts and tools to easily deploy the blockchain
network in a test environment using the different consensus algorithms, and to
deploy the contract to such network.

In addition, the testbed must also include tools to collect the required statistics and logs
that can be later processed to retrieve the metrics necessary for the impact analysis.

4.2 BlockLearning Framework’s Implementation

In this section, we go over the implementation details of the BlockLearning framework,
following the guidelines defined in Section 4.1. The complete implementation is publicly
available on GitHub1.

4.2.1 Smart Contracts

As mentioned previously, we use the Ethereum [87] blockchain platform as it is the most
popular and compatible with all the techniques we use for our experiments and compar-
ison with the related work. Therefore, the smart contracts must be implemented in a
programming language that supports Ethereum. We chose the Solidity [14] programming
language as it is the most well-known with the widest support.

Since our framework supports different algorithms, we need four different smart contracts.
These smart contracts inherit most of their functionality from an abstract smart contract
that provides the common data structures and functionality, named Base. Then, we
implement the following classes, that derive from Base:

• RandomSelectionNoScoring, which is used when we do not need a scoring algo-
rithm. It only adds a new function to the Base class in order to allow the model
owner to start a round with random participant selection.

1https://github.com/hacdias/blocklearning

23 Framework Design and Implementation

https://github.com/hacdias/blocklearning

• RandomSelectionScoring, which is used when we need a scoring algorithm. This
smart contract implements the required methods to support the scoring phase, such
as scoring submissions and the scoring round. In addition, it adds a function to
allow the model owner to start a round with random participant selection.

• FirstComeFirstServedNoScoring, which is used with the first-come first-served
participant selection algorithm with no scoring mechanism. It adds a function to
allow the model owner to start a round with first-come first-served participant
selection.

A class diagram with the public interfaces of the contracts, as well as the data types,
is depicted in Figure 4.3. From the diagram, we can see that the smart contract pro-
vides round information and control, registration management, updates submission and
retrieval, scores submission and retrieval, as well as aggregation submission and re-
trieval. One may note that the scores submission and retrieval are only implemented
in RandomSelectionScoring as the remaining smart contracts are not used with scoring
mechanisms.

Base

+ owner: address
+ model: string
+ round: int
+ roundPhase: RoundPhase
+ weights: map(int => string)
+ submissions: map(int => address => Update)

+ registerAggregator(): void
+ registerTrainer(): void
+ getTrainers(): address[]
+ getAggregators(): address[]
+ getRoundForTraining(): TrainingRound
+ getUpdatesForAggregation(): Updates[]
+ submitUpdate(Update): void
+ submitAggregation(string)
+ terminateRound()

TrainingRound

+ round: integer
+ weights: string

Updates

+ round: string
+ trainers: address[]
+ updates: Update[]

RandomSelectionNoScoring

+ startRound(address[], address[]): void

RandomSelectionScoring

+ scores: map(int => address => address => int)

+ registerScorer(): void
+ getScorers(): address[]
+ startRound(address[], address[], address[])
+ getUpdatesForScore(): Updates[]
+ submitScores(address[], int[])
+ getScores(): (address[], address[], int[][])

Update

+ trainingAccuracy: int
+ testingAccuracy: int
+trainingDataPoints: int
+ weights: string

«Enumeration»
RoundPhase

Stopped
WaitingForUpdates
WaitingForScores
WaitingForAggregations
WaitingForTermination

FirstComeFirstServedNoScoring

+ startRound(): void

Figure 4.3: Smart Contracts Class Diagram

An interesting implementation detail to note is that score and accuracy values are stored
as integers. Currently, Solidity does not support floating point numbers. To preserve
fidelity, the original values are multiplied by a large integer, 1018. Then, when the values
are retrieved from the smart contract, they are divided by the same value in order to get
the original value.

24 Framework Design and Implementation

4.2.2 Library

The library is implemented in the Python [81] programming language. The main mo-
tivation for using Python is that many well-known Machine Learning libraries, such as
TensorFlow [1] and PyTorch [62] are implemented in Python, as well as many data pro-
cessing tools.

4.2.2.1 Aggregation, Scoring and Privacy Algorithms

The first component of the library is the aggregation, scoring and privacy algorithms.
Each of these categories of algorithms has a specific interface to which each algorithm
must conform to. By having a common interface, we can implement new algorithms, or
change existing ones, easily. The interfaces are as follows:

• aggregate(trainers, updates, scorers, scores) → weights

The aggregators must provide a function aggregate that receives an array with
the trainer addresses, an array with the updates sorted by the same order as the
trainers, an array with the scorers and an array with the scores sorted by the same
order as the scorers. It is important to note that the scorers and the scores are
optional arguments since a scoring algorithm is not always required. The function
returns an array with the aggregated weights.

• score(round, trainers, updates) → trainers, scores

The scorers must provide a function score that receives an integer with the round
number, an array with the trainer addresses, as well as an array of updates that are
sorted by the same order as the trainer addresses. The function returns an array
with the trainers and their submission scores.

• privatize(x) → y

The privacy mechanisms must provide a function score that receives an array of
the weights x and returns the privatized weights y.

Each of the aggregation and scoring algorithms is implemented based on the algorithms
and details provided by the original authors. The local differential privacy is implemented
using IBM’s diffprivlib [28] library.

4.2.2.2 Weights Storage and Retrieval

The second component of the library is the utilities to store and retrieve the weights. The
weights storage class also provides a common interface such that it is possible to change
which storage provider we use. For our implementation, we use the InterPlanetary File
System (IPFS) [6] as our decentralized storage provider since it was used by many of the
works reviewed in Chapter 3.

IPFS is a distributed content addressed file system, which implies that, every file is
addressed by its content. It works by attributing a hash, based on the file’s content.
Using this hash, also known as Content Identifier (CID), the file can be retrieved from
the network and guaranteed to be immutable. Instead of storing the entire file in the
blockchain, the CID can be stored. Pairing IPFS with the blockchain keeps the system
decentralized and distributed, while offloading the storage to a different system.

25 Framework Design and Implementation

4.2.2.3 Smart Contract Bridge

The third component is the smart contract bridge class. The smart contract bridge is
implemented using the Web3.py [22] library, which provides utilities to call the functions
of the smart contracts. The contract bridge class provides 1:1 functions for each functions
of the smart contract.

4.2.2.4 Trainer, Scorer and Aggregator Classes

The fourth and the final component of the library is the Trainer, Scorer and Aggregator

classes. These classes implement the main flow of each of these procedures using the mod-
ules aforementioned described. For example, the trainer class is initialized with the con-
tract bridge, the weights storage, the model, the data and an optional privacy mechanism.
Then, it provides a method train() that executes the training procedure. Similarly, the
scorer class provides score() and the aggregator class provides aggregate().

4.2.3 Testbed

The testbed, that is, the platform to conduct the experiments. It was mostly implemented
using the aforementioned library and Docker [52]. Docker is a platform that allows
to easily deploy applications in an isolated setting through what is called a container,
allowing us to simulate multiple devices in the same network. Each container runs an
image, which is the name given to the piece of software than runs on the container.

In the testbed, we have two major components: the client, server and model owner scripts,
the federated learning environment deployment and the blockchain deployment. These
are discussed on the following subsections.

4.2.3.1 Client, Server and Owner Scripts

The client, server and model owner scripts are the processes that will run at the client,
server and model owner, respectively. These are implemented using the BlockLearning
library. In each of these scripts, we first load the required data, such as the data set in
the clients, and initialize the required algorithms, namely the scoring, aggregation and
privacy algorithms.

Then, depending on the scoring algorithm, we initialize the relevant classes at the correct
machines. For example, for the BlockFlow scoring algorithm, the client initializes a
Trainer and a Scorer, while the server initializes an Aggregator. In contrast, for Multi-
KRUM, the client only initializes a Trainer, while the server initializes an Aggregator

and a Scorer. On Algorithm 1 you can visualize part of the main loop of the client
script.

4.2.3.2 Blockchain Setup and Deployment

The Blockchain setup and deployment is done using already existing tools and our library.
As previously mentioned, we use Docker containers in order to run the experiments.
Moreover, we use Docker Compose in order to deploy multiple containers at once and
orchestrate the deployment process.

26 Framework Design and Implementation

Algorithm 1 Client Script Main Loop

Require: s ∈ {Ø, BlockFlow, MarginalGain}
T ← Initialize Trainer
if s is not Ø then

S ← Initialize Scorer
end if
while True do

P ← Get Phase From Smart Contract
if P is Waiting For Updates then

Execute Training Procedure T.train()
else if P is Waiting For Scores then

Execute Scoring Procedure S.score()
end if

end while

We use different Ethereum implementations, depending on the consensus algorithm since
they are not all available within the sample implementation. Ethereum’s main imple-
mentation, go-ethereum [21], provides PoA and PoW. For QBFT, we use a fork called
quorum [13], which is mostly identical to go-ethereum but supports QBFT.

Moreover, the Blockchain setup and deployment follows the following steps:

1. Generate Accounts. In first place, the Ethereum accounts for the clients and servers
are generated using the provided go-ethereum toolkit. Each account is pre-loaded
with 100 ETH, the Ethereum currency, so that clients or servers will not run out
of currency to submit their transactions.

2. Build Images. In second place, we build the Docker images that will be used to
deploy the Blockchain network. This images are based on the images provided by
each of the Ethereum’s implementations that we use. In addition, they pre-load
the account information, as well as some additional configuration to ensure that all
nodes are connected when the network is bootstrapped.

3. Deploy Network. In third place, the network is deployed using Docker Compose
and the configured amount of nodes.

4. Deploy Contract. Finally, the contract is deployed to the network using Truffle,
which is a tool designed to help developers developing and deploying smart con-
tracts.

Finally, we would like to mention that originally we were planning on testing the PoS
consensus algorithm. However, the only fork providing PoS support does not work in
private network settings [19]. Therefore, it was not possible to run an experiment with
PoS.

4.2.3.3 Federated Learning Setup and Deployment

Similarly to the Blockchain setup and deployment, we also use Docker Compose for the
Federated Learning system. The process is identical as in the previous section, except

27 Framework Design and Implementation

that we only build the images and deploy the Federated Learning network.

4.2.3.4 Statistics and Metrics Collection

The different components of the library, such as the Trainer, Scorer and Aggregator

classes, produce logs. These logs contain information related to timestamps and round
number, and events that happen at certain points of the execution, such as: aggregation
started, aggregation ended, scoring started, scoring ended, among others. These logs are
retrieved from the containers using command-line tools implemented into a script called
toolkit.py.

In addition, resource-related statistics, such as RAM usage, CPU usage, and network
traffic, are collected directly from the Docker, through the docker stats command.

28 Framework Design and Implementation

Chapter 5

Experimental Setup and Evaluation

In this chapter, we provide information regarding the experimental setup and performance
evaluation. To be more precise, this chapter explains which data set we use, how the data
is partitioned, which models are used in the experiments, the software and hardware
specifications of the experimental environment, as well as description of experiments we
perform.

5.1 Data Set

The data set used for the experiments is the MNIST [39] data set. The MNIST data set
includes 70,000 images of handwritten digits from 0 to 9, where each image is 28 by 28
pixels. Some samples are illustrated in Figure 5.1.

Label: 7 Label: 6 Label: 1 Label: 4 Label: 1 Label: 0

Figure 5.1: MNIST Example Samples

The MINST data set is not only a well-known data set but also widely used by the
majority of the reviewed works, as seen in Table 3.2. Therefore, to be able to compare
our experiment results with the original works, we use the same data set.

5.2 Client Sampling

The client sampling, that is, the process of dividing the samples among the clients,
depends on how data is partitioned across federated learning clients. Data may be par-
titioned horizontally or vertically in federated learning systems. In the following subsec-
tions, we explain how we sample the data for each of the data partitions.

29

5.2.1 Horizontal

In horizontally partitioned data, as explained in Section 2.1.2, different clients have dif-
ferent samples that share the same feature space. Additionally, in a distributed system, it
is expected that the clients are heterogeneous in terms of their computational character-
istics and data. Therefore, it is safe to assume that the data distribution in a distributed
setting is non-iid.

To simulate a non-iid distribution, both in terms of number of samples and number of
classes at each client, we use the Dirichlet distribution [18, 43]. The Dirichlet distribution,
Dir(α), is a probability distribution characterized by its parameter α, which controls
the degree of non-iid -ness of the distribution. The higher the α, the more identically
distributed the data will be. The lower the α, the more likely it is for each client to only
hold samples of a single class.

For our experiments, we set α = 0.1 in the Dirichlet distribution as it yields a realistic
non-iid distribution [43], where some clients hold many samples of a few classes, while
other clients have few samples of many classes. Moreover, the clients have, on average,
2500 samples each. Some clients have more samples, some have less, simulating a non-iid
distribution.

In order to perform the horizontal client sampling, we used a publicly available tool [79]
that supports sampling from the MNIST data set directly using the Dirichlet distribution.
We did so for 5, 10, 25 and 50 clients. Figure 5.2 illustrates the sample distribution for
10 clients. From Figure 5.2, it is possible to see how non-iid the distribution is, both in
terms of number of data samples and class distribution. For example, client 7 has many
samples from classes 2 and 4, while having none of the remaining classes. At the same
time, client 10 has a few samples from classes 0, 1, 2, and 9 and many from class 7.

0

500

1000

1500

2000 Client 1 Client 2 Client 3 Client 4 Client 5

0 1 2 3 4 5 6 7 8 90

500

1000

1500

2000 Client 6

0 1 2 3 4 5 6 7 8 9

Client 7

0 1 2 3 4 5 6 7 8 9

Client 8

0 1 2 3 4 5 6 7 8 9

Client 9

0 1 2 3 4 5 6 7 8 9

Client 10

Figure 5.2: Horizontal Data Distribution For 10 Clients

5.2.2 Vertical

Vertically partitioned data is significantly different from horizontally partition data, in
the sense that the clients share intersecting sample spaces, but different feature spaces.
Therefore, it is not possible to simply divide the samples among the clients.

30 Experimental Setup and Evaluation

Client 1

0001 0012

1255 0002 6545

7632ID
Sa

m
pl

e
ID

Sa
m

pl
e

Client 2

0001 0012

1255 0002 6545

7632ID
Sa

m
pl

e
ID

Sa
m

pl
e

Owner

0001 00127632ID

Label 6 2 0

1255 65450002ID

Label 5 4 8

Figure 5.3: Vertical Data Distribution for 2 Clients

For the vertical data partition, we use the work reported in [72]. Firstly, we choose how
many samples to assign to each client. We chose 20,000 samples in order to match the
original work [72] we will be comparing to. Then, the samples are randomly chosen from
the original data set. Subsequently, each sample is assigned a unique identifier (ID) that
will be used as label when giving the data samples to each client. Only the servers have
access to the ground truth labels. After assigning the IDs, the feature space F will be
divided into C parts Fc, where C is the number of clients. Finally, the features Fc, with
c ∈ C will be assigned to each of the clients.

For vertical data partitioning, we divide the data set as in [72] to use it with a Split-
CNN [31] model, which will be introduced in the next section. To use this model, the
model owner is expected to have the labels, while the clients are expected to have some
features of each sample. For the MNIST data set, we can think of the features as vertical
fragments of the image. To divide a 28 by 28 image sample between 2 clients, for example,
we split the image into two 14 by 28 segments, as depicted in Figure 5.3.

5.3 Machine Learning Models

The models used on this work are simple models found in related work. The goal of this
work is not to provide the most efficient or accurate FL model. Therefore, we do not dive
into the details of the models. The models used for horizontal and vertical training are
succinctly explained below.

5.3.1 Horizontal Model

For the horizontal FL, we use a simple Convolutional Neural Network (CNN) [15] with
three levels of convolution intercalated with max pooling to reduce overfitting. These
layers are followed by a flattening layer and two dense layers that culminate in the output.
The architecture is depicted in Figure 5.4 and more details about its parameters can be
found in Table 5.1. To train this model, both servers and clients have the same model.
Then, the clients train the the model with their own data set. Subsequently, the clients
send the weights to the servers by submitting their local model update to the blockchain

31 Experimental Setup and Evaluation

via the smart contract. Finally, the servers aggregate the weights and publish the global
model weights through the smart contract.

Max Pooling Convolution Max Pooling Convolution Fully ConnectedConvolution

Figure 5.4: CNN Model Architecture

Layer Type Output Shape

Convolutional 2D (26, 26, 32)
Max Pooling 2D (13, 13, 32)
Convolutional 2D (11, 11, 64)
Max Pooling 2D (5, 5, 64)
Convolutional 2D (3, 3, 64)

Flatten (576)
Dense (64)
Dense (10)

Table 5.1: CNN Model Parameters of the Horizontal FL

5.3.2 Vertical Model

For the vertical FL, we use a dual-headed, or four-headed, Split-CNN [31, 72], depending
on whether we have two or four clients. The model at the clients is the head model,
while the model at the servers is the tail model. To train this model, each client gives its
input data to the models and collects the output of the last layer. Then, this intermediate
output is sent to the servers, which are then given to the tail model. The servers calculate
the gradients, which are then backpropagated to the clients. For more details, please
consult the original works where the workings of this model are given in more detail. The
architecture is depicted in Figure 5.5 and more details about its parameters can be found
in Table 5.2.

Layer Type Output Shape

Convolutional 2D (26, 12, 32)
Max Pooling 2D (13, 6, 32)
Convolutional 2D (11, 11, 64)
Max Pooling 2D (5, 2, 64)

(a) Head

Layer Type Output Shape

2 Input Layers (5, 2, 64)
Concatenation (5, 2, 128)

Flatten (1280)
Dense (512)
Dense (256)
Dense (10)

(b) Tail

Table 5.2: Split-CNN Dual-Headed Model

32 Experimental Setup and Evaluation

Fully ConnectedMax Pooling Convolution Max PoolingConvolution

Max Pooling Convolution Max PoolingConvolution

Concatenation

Figure 5.5: Split-CNN Model Architecture

5.4 Hardware and Software Specifications

The experiments were executed in a remote machine, whose hardware and software spec-
ifications can be found in Table 5.3. Due to resource limitations, it was not possible to
have a machine with GPU. Furthermore, if we consider that FL systems are being run
in IoT clients, it is unlikely that such resource-constrained devices would have a GPU
available. In addition, the MNIST data set and the models we used are relatively sim-
ple, which means that they can be easily trained using CPUs. Nonetheless, it is worth
mentioning that the training process would likely be faster in machines with GPUs.

Hardware Model

CPU AMD Ryzen 5 3600 6-Core 4.2 GHz
RAM 64 GB
Disk 500 GB NVMe

(a) Hardware

Software Version

Docker 20.10.15
Docker Compose 2.5.0
Python 3.8.13
Node.js 16.15.0
Truffle 5.5.13
Ganache 7.1.0
Solidity 0.5.16

(b) Software

Table 5.3: Hardware and Software Specifications of Experiments

5.5 Performance Evaluation Metrics

We select the following metrics for our performance evaluation: execution time, transac-
tion costs, transaction latency, model accuracy and convergence, communication costs,
and computation costs.

33 Experimental Setup and Evaluation

5.5.1 Execution Time

To compare execution time, we define two metrics: the End-to-end (E2E) Execution Time
and the Mean Round Execution Time. The former is defined by the time it takes for an
experiment to be executed from start to the end. The latter is defined by the mean time
it takes to complete an experiment round, which can be calculated by dividing the E2E
Execution Time by the number of rounds of the experiment.

5.5.2 Transaction Costs and Transaction Latency

To compare the blockchain costs, namely the impact of waiting for transactions, we define
two metrics: the Transaction Latency and the Transaction Cost. The former is defined
as the mean time it takes between submitting a transaction and it being accepted by the
network. The latter is defined by the mean computation effort to execute a transaction,
which, in the case of Ethereum, is measured in Gas.

Both the transaction latency and transaction cost values are retrieved directly from the
Blockchain. Ethereum provides information on how much time transactions take to be
accepted, as well as how much each transaction costs. Then, we only calculate the mean.

5.5.3 Model Accuracy

To compare the model accuracy, we use a global Accuracy metric for the FL model, where
the model owner, that is, the one that initiates the process, has some data set with which
it can test the model. The logs produced by the model owner contain the accuracy and
are used to extract the accuracy of each round.

5.5.4 Communication and Computation Costs

To compare the communication costs, we define the Network Traffic Per Round metric,
which is defined by how much network traffic flows to and from each process. It is
collected for the client, server, and blockchain processes individually. By knowing the
network traffic required for each process, we can draw conclusions regarding how the
network traffic impacts different types of devices. For example, if there is a high volume
of traffic per round at the client process, and the clients are resource-constrained IoT
devices with low network bandwidth, then it is expected that each round takes longer
since less traffic can go through the device at a single point in time.

To compare the computation costs, we collect the RAM Usage and CPU Usage.

The communication and computation costs metrics are collected at the client, server,
and blockchain processes in order to be able to differentiate the effects of the different
algorithms on the different parts of the system. However, it is important to note that, in
practical settings, the server process and the blockchain process run on the same device.

To collect these metrics, we use docker stats, which is a command provided by Docker,
the platform used for BlockLearning’s Testbed. The statistics command provides a live
stream of the container’s resource consumption, namely the CPU percentage, the RAM
memory usage, and the network traffic in and out.

34 Experimental Setup and Evaluation

5.6 Experiment Groups

The conducted experiments can be divided into three groups, of which two analyze how
using different types of algorithms impact the system’s performance in terms of model
accuracy, convergence, communication, and computation costs. These two groups relate
to impact analysis of:

1. Consensus Algorithms : PoA, PoW, and QBFT. Consensus algorithms are a com-
ponent of the blockchain and they are expected to impact Horizontal Federated
Learning and Vertical Federated Learning equally.

2. Horizontal Federated Learning

(a) Participant Selection Mechanisms : random selection versus first-come first-
served.

(b) Scoring Algorithms : BlockFlow, Multi-KRUM, Marginal Gain, as well as with-
out any scoring algorithm. For each scoring algoritm, we also analyse the
impact of:

i. Number of Clients : 5, 10, 25, 50, selected based on the current literature
and available resources we have at our disposal to execute the experiments.

ii. Privacy Degree: 1 and 5, as well as without any privacy mechanism.

In the third and last experiment group, we investigate if it is possible to implement and
run a Blockchain-based Federated Learning with vertically partitioned data. To do so,
we analyze how to extend the BlockLearning framework in order to support the Split-
CNN model. Then, we implement the required extensions to the framework. Finally,
we execute the experiments and compare the results with the original work where the
Split-CNN model was used with the MNIST dataset in order to validate our experiment.

As explained in Section 2.1.2, Vertical Federated Learning systems have an additional
step, in which the Private Set Intersection (PSI) of the client’s data sets is calculated. In
this work, we assume that the PSI is calculated beforehand and that it is already known
to all devices. The PSI calculation can be done in different ways and it is its own area
of research of Computer Science. The related works we analyzed either did not provide
information on how this was calculated, or also assumed that is has been calculated
beforehand. In future works, it would be interesting to integrate a PSI mechanism into
the framework.

All experiments were performed for 50 rounds so that we can compare the model accuracy
results to other papers. This way, we can validate if our experiments are within the
expected values. Secondly, all experiments were performed with 10 servers that run both
the server process and the blockchain process. Thirdly, all experiments, except for those
where the number of clients are compared, are run with 25 clients.

35 Experimental Setup and Evaluation

Chapter 6

Impact Analysis of Consensus
Algorithms

In this chapter, we analyze the first experiment group, that is, the impact of using
different consensus algorithms on the Blockchain-based Federated Learning system. The
consensus algorithms are part of the blockchain itself. Therefore, they do not impact
horizontal and vertical FLs differently. In this set of experiments, all properties of the
system are fixed, except for the consensus algorithm, which varies between PoA, PoW
and QBFT.

6.1 Execution Time, Transaction Cost, and Transaction
Latency

The first performance evaluation metrics we look into are the mean time it takes for a
round to complete, the mean transaction latency, and the mean transaction cost. These
values are presented in Table 6.1.

Metric PoA PoW QBFT

E2E Time (m) 18.93 30.62 18.97
Mean Round Time (s) 22.70 36.72 22.74

Mean Transaction Latency (s) 1.549 1.821 1.558
Mean Transaction Cost (Gas) 183124 227052 182880

Table 6.1: Execution Time, Transaction Cost, and Latency of Consensus Algorithms

Regarding time, we can observe that different consensus algorithms can lead to very
different execution times. On the one hand, PoA and QBFT are the fastest consensus
algorithms, providing the lowest execution times. Additionally, the difference between
both is minimal, i.e., only 0.04 seconds per round. On the other hand, PoW takes the
longest, being 1.6 times slower than both PoA and QBFT.

Transaction latency and costs follow a similar trend as the execution times. Both PoA
and QBFT have similar transaction latency and cost, differing with a small amount, while

36

PoW has a higher transaction latency and cost. PoW costs are 1.2 times higher than
PoA and QBFT.

As explained in subsection 2.2.3, PoW works by solving increasingly complex mathemat-
ical equations that consumes high amounts of resources. This intense process can lead to
slower response rates, which translates to higher transaction latency and costs. This, in
turn, increases the time it takes for each round to complete.

6.2 Model Accuracy and Convergence

The model accuracy, as well as the convergence, as it can be seen in Figure 6.1, does not
change significantly per consensus algorithms. Consensus algorithms determine the order,
at which the transactions are processed and ensure consistency between the multiple
blockchain nodes. This only affects the blockchain internal processes, and not the ML
process. Therefore, it was not expected that the consensus algorithms would have an
impact on the model accuracy.

0 10 20 30 40 50
Round

0

20

40

60

80

100

Ac
cu

ra
cy

 (%
)

PoA
PoW
QBFT

Figure 6.1: Accuracy Per Consensus Algorithm

6.3 Communication Costs

For the communication costs, we analyze the inbound and outbound network traffic per
round at the client, server, and blockchain processes. These values can be observed in
Figure 6.2.

On one hand, the inbound and outbound traffic for the clients and server have negligible
differences when using different consensus algorithms. As mentioned in the previous
section, the consensus algorithms have no expected impact on the ML process. Since the
clients and servers only concern the ML process, it was expected that the clients and
servers would not be affected. The small differences, in the order of < 2 MB, we can
observe on the servers are likely related to fluctuations in the random participant selection
algorithm. If more participants are being selected, more data needs to be transmitted,

37 Impact Analysis of Consensus Algorithms

and vice-versa. In this case, 17.9, 18.3, and 17.7 clients participated in each round, on
average, for PoA, PoW and QBFT, respectively.

On the other hand, the traffic at the blockchain process varies considerably depending
on the consensus algorithm used. On average, PoW requires more bandwidth per round
than PoA, but the difference is minimal. However, QBFT requires 2 times more network
traffic than PoW and 4 times more traffic than PoA. QBFT is a three-phase consensus
algorithm, which requires a higher number of network messages to be transmitted before
reaching a consensus. In addition, the size of the messages also differs. When combining
both of these aspects, we can conclude that the expected network traffic per round using
the QBFT algorithm would be higher, as verified.

0.00

1.00

2.00

3.00

4.00

5.00

Cl
ie

nt
 P

ro
ce

ss

0.00

5.00

10.00

15.00

20.00

25.00

Se
rv

er
 P

ro
ce

ss

PoA PoW QBFT
0.00

1.00

2.00

3.00

4.00

5.00

Bl
oc

kc
ha

in
 P

ro
ce

ss

Ne
tw

or
k

Tr
af

fic
 (M

B)

Consensus Algorithm

Inbound Outbound

Figure 6.2: Network Traffic Per Round Per Consensus Algorithm

6.4 Computation Costs

Regarding computation costs, we look at both RAM and CPU usage on the client, server,
and blockchain processes. Figure 6.3 and Figure 6.4 show the mean RAM usage and
mean CPU usage, respectively, per consensus algorithm during the execution of the ex-
periments. As mentioned previously, the execution times for PoA and QBFT are lower
than for PoW, which can be seen in the figures by not showing more data past minute
19. Additionally, as explained before, the consensus algorithms are not expected to have
a direct impact on the clients or the servers.

Regarding the clients, the RAM usage and CPU usage do not differ significantly regardless
of which consensus algorithm is used. From the RAM usage, we observe that the clients
reach the same peak. However, the rate at which that peak is reached is different. For
PoW, since there are higher transaction latencies, it takes longer to reach the next round,

38 Impact Analysis of Consensus Algorithms

200

400

600

800

Cl
ie

nt
 P

ro
ce

ss

100
125
150
175
200
225
250

Se
rv

er
 P

ro
ce

ss

0 5 10 15 20 25 30

1000

1500

2000

2500

Bl
oc

kc
ha

in
 P

ro
ce

ss

Time (m)

RA
M

 U
sa

ge
 (M

B)

PoA PoW QBFT

Figure 6.3: RAM Usage Per Consensus Algorithm

0

20

40

60

80

100
Cl

ie
nt

 P
ro

ce
ss

0

20

40

60

80

100

Se
rv

er
 P

ro
ce

ss

0 5 10 15 20 25 30
0

20

40

60

80

100

Bl
oc

kc
ha

in
 P

ro
ce

ss

Time (m)

CP
U

Us
ag

e
(%

)

PoA PoW QBFT

Figure 6.4: CPU Usage Per Consensus Algorithm

39 Impact Analysis of Consensus Algorithms

leading to a slower growing RAM usage during the model training phase. On the other
hand, from the CPU usage, we observe that there are more idle moments, that is, moments
at which the CPU usage is lower. This can also be explained by the higher transaction
latencies, during which the clients cannot do anything other than wait for the transaction
to be approved.

Regarding the servers, the same reasoning as for the clients can be applied. While the
RAM usage is consistent across different consensus algorithms, we notice that when
using QBFT, the RAM usage at the servers is slightly higher. However, this is a likely
negligible difference, as the difference is minimal (< 10 MB) considering the total RAM
Usage (≈ 200 MB). The CPU usage is similar to what we observed for the clients, with
a higher amount of idle moments.

Regarding the blockchain process, we observe a larger difference, both in terms of RAM
and CPU usages. For both, PoW consumes a much higher level of resources. On average,
PoW consumes 2 times more then RAM and has a 2 times higher CPU usage. This can
also be explained by the way PoW works by solving complex mathematical equations,
which require intense computation resources.

6.5 Conclusions and Improvements

In conclusion, we can observe that different consensus algorithms have no direct impact on
the model accuracy and computation and communication costs at the clients and servers.
However, they have an impact on the time and computation and communication costs
at the blockchain process. PoA and QBFT are much faster than PoW. In addition, they
require less computation power, both in RAM and CPU. However, QBFT consumes incurs
more communication costs than both PoA and PoW. Therefore, there is a clear correlation
between the computation costs and the time it takes. The higher the communication
costs, the higher the transaction latencies, which translates to slower round times.

Assuming that the blockchain network is only being used for FL, PoA is the most cost-
effective of the consensus algorithms we analyzed.

It is also worth pointing out that, as discussed in Chapter 3, PoA is criticized for not
being as decentralized as the other algorithms due to the way the validator nodes are
chosen. If a higher degree of decentralization is required, as in a public network for
example, PoW and QBFT may be better options. There is therefore a trade-off between
the degree of decentralization and the communication and computation consumption.

For future work, it would be interesting to study if the Ethereum blockchain could be
adapted to easily incorporate the custom consensus algorithms that were seen in Sec-
tion 3.1. These algorithms work by producing proofs directly from the Machine Learning
process. This can lead to better usage of resources if the blockchain network is solely
used for a FL system.

40 Impact Analysis of Consensus Algorithms

Chapter 7

Impact Analysis of Participant Selection
and Scoring Algorithms in Horizontal
Blockchain-based Federated Learning

In this chapter, we analyze the impact of using different participant selection and scoring
algorithms on a Blockchain-based Federated Learning (BFS) system with horizontal data
partition. In addition, for each scoring algorithm, we analyze how they behave and how
the system is impacted by different number of clients, as well as privacy degrees. Due to
the high number of plots, the communication and computation costs plots are placed at
the end of the chapter.

7.1 Participant Selection Algorithms

In this set of experiments, all properties of the system are fixed, except for the participant
selection algorithm, which can be either random selection or first-come first-served.

Both algorithms choose the number of clients in the same way, via a uniform random
distribution. However, the clients themselves are chosen differently. Consequently, it is
possible that the distribution of chosen clients is slightly different, which may affect the
system performance. Figure 7.1 illustrates client participation (represented by the bars),
as well as the average number of participation per client (represented by the lines). It is
clear from the plot that the distributions are different.

On one hand, random selection presents a more uniform distribution, where each client
was selected a similar number of times. On the other hand, first-come first-served presents
a more skewed distribution, where some clients, such as client 1, participate many times
and others, such as client 12, participate very few times. To support this observation,
we calculated the standard deviation. For the random selection, the standard deviation
is approximately 2.49, while for the first-come first-served it is 11.84.

From this observations, we can conclude that, by letting clients take initiative to join a
round, similarly to what happens in first-come first-served, it is possible that some will
end up participating more than others. By participating more often, the clients will have

41

1 2 3 4 5 6 7 8 9 10111213141516171819202122232425
Client

0

10

20

30

40

50

Pa
rti

cip
at

io
ns

Random
First Come First Served

Figure 7.1: Participation of Each Client Per Selection Algorithm

more influence on the global model, which can lead to skewed results.

7.1.1 Execution Time, Transaction Cost, and Transaction Latency

Regarding execution time, it can be seen from Table 7.1 that both algorithms only differ
in approximately 1.2 minutes, which translates to a difference of 1.1 seconds per round.
In addition, the random participation was slightly faster than the first-come first-served.
This negligible difference is likely caused by the fact that, in random selection, less clients
participated on average per round, as shown in Figure 7.1. With slightly less clients, we
expect that a round takes slightly less time.

First Come First Served Random

E2E Time (m) 19.70 18.93
Mean Round Time (s) 23.62 22.70

Mean Transaction Latency (s) 1.560 1.549
Mean Transaction Cost (Gas) 189179 183124

Table 7.1: Execution Time, Transaction Cost, and Transaction Latency Per Participant Selec-
tion Algorithm

7.1.2 Model Accuracy and Convergence

As it can be seen from Figure 7.2, even though both algorithms reached identical model
accuracy values at the last round, the random selection was more stable during the initial
20 rounds. This can be explained by the fact that the distribution of clients participating
in each round with the random selection was closer to a uniform selection. Since the
data is non-iid, by having the same clients participate repeatedly, the model can become
skewed towards their data. However, after 20 rounds, the majority of the clients had the
opportunity to participate in the model, which explains why it became more and more
stable.

42 Impact Analysis of Participant Selection and Scoring Algorithms in Horizontal
Blockchain-based Federated Learning

0 10 20 30 40 50
Round

0

20

40

60

80

100

Ac
cu

ra
cy

 (%
)

Random
First Come First Served

Figure 7.2: Model Accuracy Per Participant Selection Algorithm

7.1.3 Communication Costs

Figure 7.3 illustrates the network traffic per round for client, servers, and the blockchain
processes. This algorithms solely influences which and how many clients are selected per
round. Therefore, the individual communication traffic of each process is not expected
to change significantly as long as the number of participants per round does not change
significantly. In these experiments, we observe form Figure 7.1 that the difference of
clients participating per round is smaller than 5. This small difference explains why the
inbound traffic at the server process is slightly higher, since the server has to download
weights from a higher number of clients in order to perform the aggregation.

7.1.4 Computation Costs

Figure 7.4 and Figure 7.5 show the RAM usage and CPU usage per each process, re-
spectively. Similarly to what was observed regarding the communication costs, the RAM
usage at the server is slightly higher, which is explained by the additional weights to per-
form the aggregation. One may note that this difference happens due to the randomness
of the process. In other runs, it is possible that the number of selected devices would be
lower and therefore the difference would be smaller.

7.1.5 Conclusions

From this set of experiments, we conclude that random selection performs better in terms
of fairness of selection, that is, every client is given an equal chance of participating during
the training process. In systems with non-iid data, it is important to give all clients a
chance to participate such that the model is trained with the most diverse data in order
to produce the best results. Use of the random selection can ensure that the most amount
of data is seen from most clients.

43 Impact Analysis of Participant Selection and Scoring Algorithms in Horizontal
Blockchain-based Federated Learning

0.00

1.00

2.00

3.00

4.00

5.00

Cl
ie

nt
 P

ro
ce

ss

0.00

5.00

10.00

15.00

20.00

Se
rv

er
 P

ro
ce

ss

Random First Come First Served
0.00

1.00

2.00

3.00

4.00

5.00

Bl
oc

kc
ha

in
 P

ro
ce

ss

Ne
tw

or
k

Tr
af

fic
 (M

B)

Participants Selection

Inbound Outbound

Figure 7.3: Network Traffic Per Round Per Participant Selection Algorithm

200

400

600

800
Cl

ie
nt

 P
ro

ce
ss

160

180

200

220

240

Se
rv

er
 P

ro
ce

ss

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

1000

1500

2000

2500

Bl
oc

kc
ha

in
 P

ro
ce

ss

Time (m)

RA
M

 U
sa

ge
 (M

B)

Random First Come First Served

Figure 7.4: RAM Usage Per Participant Selection Algorithm

44 Impact Analysis of Participant Selection and Scoring Algorithms in Horizontal
Blockchain-based Federated Learning

0

20

40

60

80

100

Cl
ie

nt
 P

ro
ce

ss

0

20

40

60

80

100

Se
rv

er
 P

ro
ce

ss

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
0

20

40

60

80

100

Bl
oc

kc
ha

in
 P

ro
ce

ss

Time (m)

CP
U

Us
ag

e
(%

)

Random First Come First Served

Figure 7.5: CPU Usage Per Participant Selection Algorithm

7.2 Scoring Algorithms

In this set of experiments, all properties of the system are fixed, except for the scoring
algorithm, which varies between BlockFlow, Marginal Gain, Multi-KRUM, or no scoring
algorithm. Then, we analyze the impact of using different numbers of clients, as well as
different privacy degrees.

7.2.1 Overall Comparison

We first compare the impact of the different scoring algorithms on the overall system
without varying the number of clients or the privacy degree. This will let us draw some
initial conclusions about the different scoring algorithms that may help explain differences
observed in the remaining experiments.

7.2.1.1 Execution Time, Transaction Cost, and Transaction Latency

As it can be seen from Table 7.2, every scoring algorithm has different execution time and
transaction cost. Firstly, one may notice that not using a scoring algorithm provides the
fastest execution time as well as the lowest transaction cost. Both of these observations
are explained by the fact that scoring algorithms require more transactions to submit the
scores. Overall, the fastest scoring algorithm is Multi-KRUM, taking around 31 seconds
per round, while both BlockFlow and Marginal Gain are the slowest, taking both around
49 seconds per round.

Secondly, we observe that BlockFlow and Marginal Gain not only take the longest, but
also have similar execution times. As explained in Section 2.3.2, BlockFlow and Marginal

45 Impact Analysis of Participant Selection and Scoring Algorithms in Horizontal
Blockchain-based Federated Learning

None BlockFlow Marginal Gain Multi-KRUM

E2E Time (m) 18.93 40.95 41.38 26.25
Mean Round Time (s) 22.70 49.11 49.64 31.48

Mean Transaction Latency (s) 1.549 1.564 1.577 1.573
Mean Transaction Cost (Gas) 183124 339645 257686 280733

Table 7.2: Execution Time, Transaction Cost, and Transaction Latency Per Scoring Algorithm

Gain scores are computed by the clients, whereas Multi-KRUM scores are computed by
the servers. Since the number of clients is higher than the servers, which are fixed, there
are more devices performing scoring computations with BlockFlow and Marginal Gain.
With more devices submitting scores, there are more transactions being submitted to the
blockchain, leading to higher execution times. Therefore, it is expected that algorithms
that run on the clients, such as BlockFlow and Marginal Gain, take longer than algorithms
that run on the servers, such as Multi-KRUM.

Thirdly, we observe that the transaction latency is not influenced by the scoring algo-
rithms. As it can be seen form Chapter 6, the transaction latency is mostly affected by
the blockchain consensus algorithms, which, in these experiments, is fixed. In contrary,
the transaction costs vary per scoring algorithm. Scoring algorithms that have more de-
vices involved, such as scoring algorihtms executed by the servers, namely BlockFlow and
Marginal Gain, have higher transaction costs. Since transaction costs work on a ”supply
and demand” basis, it is expected that the more transactions are required, the higher the
cost will be.

7.2.1.2 Model Accuracy and Convergence

0 10 20 30 40 50
Round

0

20

40

60

80

100

Ac
cu

ra
cy

 (%
)

None
BlockFlow
Marginal Gain
Multi-KRUM

Figure 7.6: Model Accuracy Per Scoring Algorithm

As it can be seen from Figure 7.6, all scoring algorithms reached a high model accuracy of
at least 97%. However, some algorithms reached higher accuracy values faster than others,
that is, some converge faster. Overall, Marginal Gain converges the fastest, followed by
no scoring, then by Multi-KRUM and lastly by BlockFlow.

46 Impact Analysis of Participant Selection and Scoring Algorithms in Horizontal
Blockchain-based Federated Learning

The BlockFlow, is not only the slowest converging scoring algorithm, but also the only al-
gorithm that does not reject submissions when aggregating, as explained in Section 2.3.2.
By not rejecting submissions, but still giving them a score to be used during the weighted
aggregation, worse submissions are always included in the global model, which can lead
to lower convergence rates.

The Marginal Gain and Multi-KRUM algorithms both reject the worst submissions in
each round and only consider the best. While the Marginal Gain uses its own score for the
aggregation, the Multi-KRUM uses the number of samples of each submission, similar to
the case when no scoring algorithm is used. For this reason, the Multi-KRUM algorithm
convergence resembles the one of no scoring algorithm, while the Marginal Gain has a
smoothest convergence curve.

7.2.1.3 Communication Costs

Communication costs also vary massively depending on which scoring algorithm is used.
Some place more strain on the clients, where others place more strain on the servers.
Figure 7.7 presents the network traffic per round per scoring algorithm on the clients,
servers, and blockchain processes.

0.00

10.00

20.00

30.00

40.00

Cl
ie

nt
 P

ro
ce

ss

0.00

10.00

20.00

30.00

40.00

Se
rv

er
 P

ro
ce

ss

None BlockFlow Marginal Gain Multi-KRUM
0.00

1.00

2.00

3.00

4.00

5.00

Bl
oc

kc
ha

in
 P

ro
ce

ss

Ne
tw

or
k

Tr
af

fic
 (M

B)

Scoring Algorithm

Inbound Outbound

Figure 7.7: Network Traffic Per Round Per Scoring Algorithm

Regarding the clients, there is a large difference in terms of the network traffic when
comparing no scoring algorithm and the Multi-KRUM with the BlockFlow and Marginal
Gain. On the one hand, the Multi-KRUM has similar traffic requirements to using no
scoring algorithm on the clients because the scoring algorithm is executed on the servers.
On the other hand, the BlockFlow and Marginal Gain have higher inbound traffic at the
clients, while the outbound traffic remains similar. This can be explained by the fact that
both BlockFlow and Marginal Gain algorithms are executed by the clients. Consequently,

47 Impact Analysis of Participant Selection and Scoring Algorithms in Horizontal
Blockchain-based Federated Learning

each client has to download the weights from all other clients in each round in order to
calculate the score, leading to a higher inbound traffic.

Regarding the servers, there is not much difference between algorithms, except for the
Multi-KRUM, which calculates the scores on the server. Therefore, the server downloads
the weights of each client and requires additional time to calculate the scores, compared
to the remaining algorithms that only download the weights once for the aggregation.

Finally, regarding the blockchain, we observe that when using the BlockFlow and Marginal
Gain algorithms that there is a higher network traffic. The Multi-KRUM also requires
more traffic than no scoring algorithm, but not as much as the BlockFlow or Marginal
Gain. Since the number of clients is higher than the number of servers, there are more
transactions when the scoring algorithm runs on the clients. When there are more trans-
actions per round, there is more activity in the blockchain, leading to more network traffic
per round.

7.2.1.4 Computation Costs

The computation costs across the servers and clients follow a similar trend to what we
have seen with the communication costs. Figure 7.8 and Figure 7.9 show the RAM and
CPU usages on the client, server and blockchain processes, respectively.

Regarding the clients, all algorithms require similar amounts of RAM. The algorithms
that run on the client, i.e., the Marginal Gain and BlockFlow, consume slightly more
RAM, due to having more weights stored in memory, but the difference is negligible when
compared to the total amount of RAM they consume. This can be explained by the fact
that the weights are relatively small (≈ 2 MB) compared to the total RAM necessary to
train a model. With respect to the CPU usage, it can be seen that the algorithms that
run on the client, i.e., BlockFlow and Marginal Gain, have the lowest CPU idle time on
the clients, while taking longer to be executed. This shows that calculating the scores on
the client implies consistently higher CPU usage on the clients for longer periods of time.

Regarding the servers, it is clear that Multi-KRUM, being the only scoring algorithm
that runs on the server, requires higher amount of RAM. However, the difference (≈ 15
MB) is not significant when considering that the servers have large amount of resources
at their disposal. In addition, the Multi-KRUM also shows higher level of CPU usage,
with frequent spikes to 100%.

Finally, regarding the blockchain, the difference of CPU and RAM usages among the dif-
ferent scoring algorithms is negligible. Even though the blockchain receives more trans-
actions in total, it does not reflect on the RAM and CPU usage. The blockchain, by
itself, already produces blocks at a constant rate. Therefore, the number of transactions
required for the BFL system does not change significantly the CPU or RAM usage.

7.2.1.5 Conclusions and Improvements

In conclusion, scoring algorithms that are executed on the clients, i.e.,the Marginal Gain
and BlockFlow, have a higher impact on the overall system, leading to longer experiment
execution times and higher resource usage for the clients. In contrary, algorithms that
are executed on the servers, i.e., the Multi-KRUM, have a higher impact on the servers.

48 Impact Analysis of Participant Selection and Scoring Algorithms in Horizontal
Blockchain-based Federated Learning

400

500

600

700

Cl
ie

nt
 P

ro
ce

ss

190

200

210

220

Se
rv

er
 P

ro
ce

ss

0 10 20 30 40
800

1000

1200

1400

Bl
oc

kc
ha

in
 P

ro
ce

ss

Time (m)

RA
M

 U
sa

ge
 (M

B)

None BlockFlow Marginal Gain Multi-KRUM

Figure 7.8: RAM Usage Per Scoring Algorithm

0

20

40

60

80

100
Cl

ie
nt

 P
ro

ce
ss

0

20

40

60

80

100

Se
rv

er
 P

ro
ce

ss

0 10 20 30 40
0

20

40

60

80

100

Bl
oc

kc
ha

in
 P

ro
ce

ss

Time (m)

CP
U

Us
ag

e
(%

)

None BlockFlow Marginal Gain Multi-KRUM

Figure 7.9: CPU Usage Per Scoring Algorithm

49 Impact Analysis of Participant Selection and Scoring Algorithms in Horizontal
Blockchain-based Federated Learning

Since there is usually a much higher number of clients than servers, the scoring algorithms
executed by the servers have less impact on the overall system than the former. Addi-
tionally, the Marginal Gain was the most well performing algorithm in terms of model
accuracy and convergence speed, followed by the Multi-KRUM and the BlockFlow.

If we had to choose an algorithm, the choices come down to the priorities of the system.
If we are working with a system with resource-constrained devices, such as IoT systems,
it is important that the impact on the clients is low. Therefore, scoring algorithms that
run on the server, such as the Multi-KRUM, are more valuable. If the opposite is true,
or if the resource consumption at the client is not relevant, the Marginal Gain could be
chosen as it provides the best accuracy of the three.

It is also important to mention that algorithms that require more network traffic per round
may be slower on clients with low bandwidth, which is the case of many IoT networks.
With lower bandwidths, less traffic can go through at any point in time. Therefore, in
case of high network traffic required during a round, devices with low bandwidth can
make the process slower.

As a future improvement, servers can cache the client’s update weights. Specifically,
in case of the Multi-KRUM algorithm, the servers can download each of the client’s
submission twice: one time for scoring, one time for aggregating. However, the weights
downloaded both times are the same as they are part of the same round. Therefore,
caching can work well in favor of reducing the network traffic at the server for scoring
algorithms that are executed by servers.

7.2.2 Number of Clients

In this section, we analyze the impact of different numbers of clients on the scoring
algorithms. For this comparison, all properties of the system are fixed, except for the
amount of clients, which varies between 5, 10, 25 and 50, per each scoring algorithm.

7.2.2.1 Execution Time, Transaction Cost, and Transaction Latency

Figure 7.10 illustrates the execution times, as well as the transaction latency and costs.
The execution times of all scoring algorithms increase with the number of clients. How-
ever, they do not increase the same way. The Multi-KRUM algorithm, as well as not
using any scoring algorithm, have a smaller execution time increase with the number
of clients, when compared to BlockFlow and Marginal Gain. This can be explained by
the fact that, in BlockFlow and Marginal Gain, the scorers are the clients. Since, as
previously discussed, there are more clients than servers, the smart contract has to wait
for more scorers to submit their scores, than it would have to wait when using Multi-
KRUM. Consequently, the execution time increase with the number of devices is higher
with scoring algorithms executed by the clients.

Regarding the transaction latency, there is no significant change with the variation of
number of clients. As discussed before, transaction latency is mostly determined by the
capacity of the network to handle the transactions. The Ethereum has a relatively fixed
capacity of transactions per second of around 15 transactions per second. Our system
alone does not reach that rate of transactions, not influencing the transaction latency. It
is worth pointing out that, if the number of clients was in the order of hundreds, leading

50 Impact Analysis of Participant Selection and Scoring Algorithms in Horizontal
Blockchain-based Federated Learning

5 10 15 20 25 30 35 40 45 50
Number of Clients

0

20

40

60

80

100

120

140

160

180
Ti

m
e

(m
)

None
BlockFlow
Marginal Gain
Multi-KRUM

(a) E2E Time

5 10 15 20 25 30 35 40 45 50
Number of Clients

0

20

40

60

80

100

120

140

160

180

Ti
m

e
(s

)

None
BlockFlow
Marginal Gain
Multi-KRUM

(b) Mean Round Time

5 10 15 20 25 30 35 40 45 50
Number of Clients

1200

1300

1400

1500

1600

1700

1800

Tr
an

sa
ct

io
n

La
te

nc
y

(m
s)

None
BlockFlow
Marginal Gain
Multi-KRUM

(c) Mean Transaction Latency

5 10 15 20 25 30 35 40 45 50
Number of Clients

150000

200000

250000

300000

350000

400000

450000

500000

Tr
an

sa
ct

io
n

Co
st

 (G
as

)

None
BlockFlow
Marginal Gain
Multi-KRUM

(d) Mean Transaction Cost

Figure 7.10: Execution Time, Transaction Cost, and Transaction Latency Per Number of Clients

to elevated number of transactions, the latency would likely increase.

Regarding the transaction costs, we observe that they increase with the increased number
of clients. In addition, the transaction costs growth is similar per algorithm. Firstly, we
can calculate how many transactions we incur per algorithm per round by T + A + S,
where T is the number of trainers, usually clients, A is the number of aggregators, usually
servers, and S the number of scorers, which can be either the clients or servers. When
no scoring algorithm is used, the system only requires T + A transactions, where T is
the number of clients and the only growing variable. With the Multi-KRUM, the system
requires T+2A transactions, since S = A, leading to a faster growth than when no scoring
algorithm is used. Finally, both BlockFlow and Marginal Gain algorithms require 2T +A
transactions and since T > A and T is the number of growing clients, it is also expected
that the transaction cost would increase more than for the Multi-KRUM.

7.2.2.2 Model Accuracy and Convergence

As it can be seen from Figure 7.11, the model accuracy and how it converges varies
differently with different scoring algorithms. Overall, we observe that lower number of
clients leads to a less stable convergence, represented by the spiking in the model accuracy
plots. With a low number of clients, such as 5, the selected number of clients per round
is also low due to the random way the participant selection algorithms chooses how many
clients participate per round. Therefore, the model is trained with less diverse data per

51 Impact Analysis of Participant Selection and Scoring Algorithms in Horizontal
Blockchain-based Federated Learning

round. Consequently, the model can skew at some points during training, leading to a
less stable convergence. In contrary, using more clients, namely 25 and 50, has an overall
positive effect on both convergence stability and convergence speed. This is also likely
related to the fact that the model is trained with more diverse samples from more clients
in each round, leading to a better results.

0

20

40

60

80

100
None BlockFlow

0 10 20 30 40 50
0

20

40

60

80

100
Marginal Gain

0 10 20 30 40 50

Multi-KRUM

Round

Ac
cu

ra
cy

 (%
)

5 10 25 50

Figure 7.11: Model Accuracy Per Number of Clients

When it comes to the algorithm that performs best, the conclusions drawn from Sec-
tion 7.2.1 remain true: the Marginal Gain performs the best, followed by the Multi-
KRUM and finally by the BlockFlow.

7.2.2.3 Communication Costs

As it can be seen from Figure 7.12, the communication costs vary with the number of
clients. Firstly, we observe that in terms of incoming traffic at the client process, there
are significant differences depending on the scoring algorithm used.

One may notice that incoming traffic at the clients only increases when using scoring
algorithms that are executed by the clients, such as the BlockFlow and the Marginal
Gain. This can be explained by the fact that the more clients means the more weights
from these clients need to be downloaded and scored. In contrary, when the scoring
algorithm is executed by the server, there are virtually no changes in the incoming traffic
when number of clients is increased. This is because the client only has to download the
global weights after each round, which is not influenced by the number of clients.

Secondly, we observe that the incoming traffic always grows linearly at the servers when

52 Impact Analysis of Participant Selection and Scoring Algorithms in Horizontal
Blockchain-based Federated Learning

Client Process

0

20

40

60

80

100
Server Process Blockchain Process

Tr
af

fic
 In

5 10 15 20 25 30 35 40 45 50
0

2

4

6

8

10

5 10 15 20 25 30 35 40 45 50 5 10 15 20 25 30 35 40 45 50

Tr
af

fic
 O

ut

Ne
tw

or
k

Tr
af

fic
 (M

B)

Number of Clients

None BlockFlow Marginal Gain Multi-KRUM

Figure 7.12: Network Traffic Per Number of Clients

using a scoring algorithm that runs at the clients. However, when using a algorithm
that runs on the server, such as the Multi-KRUM, the growth is higher than for the
remaining algorithms. In all cases, the servers always have to download the weights for
aggregation. However, if the scoring is executed at the servers, they will download the
weights twice as explained in Section 7.2.1, leading to a super-linear traffic growth. As
previously suggested, this can be improved by caching the weights between these two
phases.

Thirdly, we observe that the outgoing traffic differences are not significant for any of the
processes. Regarding the clients and servers, we observe a very small increase on the
client or server processes, if the scoring algorithm is executed by the clients or servers,
respectively. However, the differences of outgoing traffic per number of clients for each
scoring algorithm are negligible.

Finally, the differences observed in the blockchain process, both for incoming and out-
going traffic are negligible. With the increase of the number of clients, there are more
transactions going through the blockchain. However, the transactions on the blockchain
are very small when compared to the size of weights that need to be uploaded and down-
loaded by the clients and servers, respectively.

7.2.2.4 Computation Costs

Figure 7.16, Figure 7.17, Figure 7.18 show the RAM usage at the clients, servers, and
blockchain processes, while Figure 7.19, Figure 7.20, Figure 7.21 show the CPU usage at
the clients, servers, and blockchain processes, respectively. Overall, it can be seen that
the number of clients has no major impact on RAM and CPU usage of either clients or
servers.

Even though the usage of RAM and CPU at a certain points in time does not vary
significantly, some scoring algorithms have more impact on the clients, or on the servers,

53 Impact Analysis of Participant Selection and Scoring Algorithms in Horizontal
Blockchain-based Federated Learning

as discussed in Section 7.2.1. In addition, we observe that the increase of resource usage
is proportional to the number of clients, depending on whether the the scoring algorithm
is executed by the clients or the servers.

The only major change is observed in the RAM and CPU usage of the blockchain process.
The higher the number of clients, the higher the RAM and CPU usage. This is expected
as more clients are connected to the blockchain, meaning that more devices continuously
interact and send transactions to the blockchain.

7.2.2.5 Conclusions and Improvements

In conclusion, scoring algorithms executed by the clients, i.e., the BlockFlow and Marginal
Gain, show higher execution time increases with respect to the number of clients. In
addition, the resource usage at the clients increases linearly with the number of devices.
In contrary, algorithms executed by the servers, i.e., the Multi-KRUM, do not have
significant effects on the clients’ resources usage. Therefore, in systems with resource-
constrained clients, algorithms executed by the server may be the ideal solution.

Finally, the resource usage of the blockchain process, mainly in terms of RAM, increases
with the number of clients. The blockchain resource usage is an important aspect to
consider in BFS systems. There is a clear trade-off between the number of clients with
the blockchain resource usage.

7.2.3 Privacy Degrees

In this section, we analyze the impact of different privacy degrees on each scoring algo-
rithm. In this set of experiments, all properties of the system are fixed, except for the
degree of privacy, which varies between 0, 1 and 5, per each scoring algorithm.

7.2.3.1 Execution Time, Transaction Cost, and Transaction Latency

As it can be seen from Figure 7.13, having a privacy mechanism increases the execution
time of each round by approximately 16.6 seconds. In addition, the privacy degree itself
does not seem to influence the execution time significantly.

Regarding the transaction latency and costs, there are no significant differences. The
privacy mechanism is executed by the clients before they submit their model update,
and does not change the number of transactions. Consequently, it has no impact on the
blockchain process itself.

7.2.3.2 Model Accuracy and Convergence

As it can be seen from Figure 7.14, different scoring algorithms have different accuracy
drops using different privacy degrees. Overall, we observe that not using a scoring al-
gorithm performs the worse with the highest degree of privacy, i.e., ϵ = 1. In addition,
a lower degree of privacy, i.e., ϵ = 5, yields similar, yet lower, model accuracy than not
using privacy degree. The higher the degree of privacy, the higher the noise values that
are added to the original weights. Since the weights include added noise, it is expected
that the accuracy will be lower with the higher degrees of privacy.

54 Impact Analysis of Participant Selection and Scoring Algorithms in Horizontal
Blockchain-based Federated Learning

None BlockFlow Marginal Gain Multi-KRUM
Scoring Algorithm

0

10

20

30

40

50

60
Ti

m
e

(m
)

None
 = 5
 = 1

(a) E2E Time

None BlockFlow Marginal Gain Multi-KRUM
Scoring Algorithm

0

10

20

30

40

50

60

70

Ti
m

e
(s

)

None
 = 5
 = 1

(b) Mean Round Time

None BlockFlow Marginal Gain Multi-KRUM
Scoring Algorithm

0

200

400

600

800

1000

1200

1400

1600

Tr
an

sa
ct

io
n

La
te

nc
y

(m
s)

None
 = 5
 = 1

(c) Transaction Latency

None BlockFlow Marginal Gain Multi-KRUM
Scoring Algorithm

0

50000

100000

150000

200000

250000

300000

350000

Tr
an

sa
ct

io
n

Co
st

 (G
as

)

None
 = 5
 = 1

(d) Transaction Cost

Figure 7.13: Execution Time, Transaction Cost, and Transaction Latency Per Privacy Degree

0

20

40

60

80

100
None BlockFlow

0 10 20 30 40 50
0

20

40

60

80

100
Marginal Gain

0 10 20 30 40 50

Multi-KRUM

Round

Ac
cu

ra
cy

 (%
)

None = 5 = 1

Figure 7.14: Model Accuracy Per Privacy Degree

55 Impact Analysis of Participant Selection and Scoring Algorithms in Horizontal
Blockchain-based Federated Learning

Out of the three scoring algorithms, the Marginal Gain and Multi-KRUM perform the
best in presence of the higher degrees of privacy. As explained in Section 2.3.2, both
of these algorithms reject the worst updates, while BlockFlow does not. By rejecting
the worst update, these algorithms always keep the best updates that provide the higher
accuracy, even after noise is being added to the weights. Therefore, the Multi-KRUM
and Marginal Gain have a lower accuracy drop with the higher privacy degrees, allowing
them to maintain high model accuracy while preserving privacy.

7.2.3.3 Communication Costs

In terms of communication costs, as illustrated in Figure 7.15, there are no significant
differences depending on the privacy degree used. Adding noise to the weights does not
necessarily increase their sizes and, for that reason, the network traffic costs are not
expected to change significantly.

Client Process

0

5

10

15

20

25

30

35

40
Server Process Blockchain Process

Tr
af

fic
 In

None BlockFlow Marginal GainMulti-KRUM
0

5

10

15

20

25

30

35

40

None BlockFlow Marginal GainMulti-KRUM None BlockFlow Marginal GainMulti-KRUM
Tr

af
fic

 O
ut

Ne
tw

or
k

Tr
af

fic
 (M

B)

Scoring Algorithm

None = 5 = 1

Figure 7.15: Network Traffic Per Privacy Degree

7.2.3.4 Computation Costs

Figure 7.22, Figure 7.23, Figure 7.24 show the RAM usage at the clients, servers, and
blockchain processes, while Figure 7.25, Figure 7.26, Figure 7.27 show the CPU usage at
the clients, servers, and blockchain processes, respectively. Since the privacy algorithm
is only executed by the client process, we only expect the computation costs, namely the
CPU usage, to increase at the client process. Overall, we can observe that this is true as
there are no significant changes in the RAM or CPU usage for the servers and blockchain
processes.

As it can be seen from Figure 7.22, the privacy mechanisms have no significant impact
on RAM usage. The privacy algorithm has little RAM usage when compared to the total
required for model training. In contrary, the CPU usage is higher, not necessarily in terms
of usage percentage, but in terms of longer usage times. This can be seen from Figure 7.25

56 Impact Analysis of Participant Selection and Scoring Algorithms in Horizontal
Blockchain-based Federated Learning

and is explained by the time required for the execution of the privacy algorithm at the
clients.

7.2.3.5 Conclusions

In conclusion, we see that using a privacy algorithm increases the computation costs,
and consequently, the resource usage, at the clients. This leads to longer execution times
as clients that need to process their weights and add noise to them. Therefore, there is
a clear trade-off between execution time and privacy. However, increasing the privacy
degree does not increase the execution time.

In addition, one may notice that increasing the privacy degree leads to the lower model
accuracy. This is expected since the privacy algorithm used introduce noise to the weights.
However, some of the scoring algorithms are still able to achieve higher model accuracy
values even with higher privacy degrees. This is the case for the Marginal Gain and
Multi-KRUM, which are the most well-performing algorithms.

Finally, we can argue that adding a privacy preserving algorithm to a BFS system is
crucial, specially if the model is trained with sensitive data. One of the main arguments
to apply blockchain to a Federated Learning system is the traceability and auditability.
To do so, the weights, or their representation in our case, are recorded in the blockchain,
which means they are visible and retrievable by anyone in the network. This implies that
there is a trade-off between traceability and auditability and the requirement for privacy
mechanisms, which in turn leads to higher resource usage.

57 Impact Analysis of Participant Selection and Scoring Algorithms in Horizontal
Blockchain-based Federated Learning

0 5 10 15 20 25 30 35
0

225
450
675
900

None

0 20 40 60 80 100 120

BlockFlow

0 20 40 60 80 100 120
0

225
450
675
900

Marginal Gain

0 10 20 30 40 50

Multi-KRUM

Time (m)

RA
M

 U
sa

ge
 (M

B)
5 10 25 50

Figure 7.16: Client Process RAM Usage Per Number of Clients

0 5 10 15 20 25 30 35
150
175
200
225
250

None

0 20 40 60 80 100 120

BlockFlow

0 20 40 60 80 100 120
150
175
200
225
250

Marginal Gain

0 10 20 30 40 50

Multi-KRUM

Time (m)

RA
M

 U
sa

ge
 (M

B)

5 10 25 50

Figure 7.17: Server Process RAM Usage Per Number of Clients

0 5 10 15 20 25 30 35
700

1325
1950
2575
3200

None

0 20 40 60 80 100 120

BlockFlow

0 20 40 60 80 100 120
700

1325
1950
2575
3200

Marginal Gain

0 10 20 30 40 50

Multi-KRUM

Time (m)

RA
M

 U
sa

ge
 (M

B)

5 10 25 50

Figure 7.18: Blockchain Process RAM Usage Per Number of Clients

58 Impact Analysis of Participant Selection and Scoring Algorithms in Horizontal
Blockchain-based Federated Learning

0 5 10 15 20 25 30 35
0

25
50
75

100
None

0 20 40 60 80 100 120

BlockFlow

0 20 40 60 80 100 120
0

25
50
75

100
Marginal Gain

0 10 20 30 40 50

Multi-KRUM

Time (m)

CP
U

Us
ag

e
(%

)
5 10 25 50

Figure 7.19: Client Process CPU Usage Per Number of Clients

0 5 10 15 20 25 30 35
0

25
50
75

100
None

0 20 40 60 80 100 120

BlockFlow

0 20 40 60 80 100 120
0

25
50
75

100
Marginal Gain

0 10 20 30 40 50

Multi-KRUM

Time (m)

CP
U

Us
ag

e
(%

)

5 10 25 50

Figure 7.20: Server Process CPU Usage Per Number of Clients

0 5 10 15 20 25 30 35
0

25
50
75

100
None

0 20 40 60 80 100 120

BlockFlow

0 20 40 60 80 100 120
0

25
50
75

100
Marginal Gain

0 10 20 30 40 50

Multi-KRUM

Time (m)

CP
U

Us
ag

e
(%

)

5 10 25 50

Figure 7.21: Blockchain Process CPU Usage Per Number of Clients

59 Impact Analysis of Participant Selection and Scoring Algorithms in Horizontal
Blockchain-based Federated Learning

0 5 10 15 20 25 30
0

200
400
600
800

None

0 10 20 30 40 50 60

BlockFlow

0 10 20 30 40 50
0

200
400
600
800

Marginal Gain

0 5 10 15 20 25 30 35 40

Multi-KRUM

Time (m)

RA
M

 U
sa

ge
 (M

B)
None = 5 = 1

Figure 7.22: Client Process RAM Usage Per Privacy Degree

0 5 10 15 20 25 30
170
185
200
215
230

None

0 10 20 30 40 50 60

BlockFlow

0 10 20 30 40 50
170
185
200
215
230

Marginal Gain

0 5 10 15 20 25 30 35 40

Multi-KRUM

Time (m)

RA
M

 U
sa

ge
 (M

B)

None = 5 = 1

Figure 7.23: Server Process RAM Usage Per Privacy Degree

0 5 10 15 20 25 30
700
900

1100
1300
1500

None

0 10 20 30 40 50 60

BlockFlow

0 10 20 30 40 50
700
900

1100
1300
1500

Marginal Gain

0 5 10 15 20 25 30 35 40

Multi-KRUM

Time (m)

RA
M

 U
sa

ge
 (M

B)

None = 5 = 1

Figure 7.24: Blockchain Process RAM Usage Per Privacy Degree

60 Impact Analysis of Participant Selection and Scoring Algorithms in Horizontal
Blockchain-based Federated Learning

0 5 10 15 20 25 30
0

25
50
75

100
None

0 10 20 30 40 50 60

BlockFlow

0 10 20 30 40 50
0

25
50
75

100
Marginal Gain

0 5 10 15 20 25 30 35 40

Multi-KRUM

Time (m)

CP
U

Us
ag

e
(%

)
None = 5 = 1

Figure 7.25: Client Process CPU Usage Per Privacy Degree

0 5 10 15 20 25 30
0

25
50
75

100
None

0 10 20 30 40 50 60

BlockFlow

0 10 20 30 40 50
0

25
50
75

100
Marginal Gain

0 5 10 15 20 25 30 35 40

Multi-KRUM

Time (m)

CP
U

Us
ag

e
(%

)

None = 5 = 1

Figure 7.26: Server Process CPU Usage Per Privacy Degree

0 5 10 15 20 25 30
0

25
50
75

100
None

0 10 20 30 40 50 60

BlockFlow

0 10 20 30 40 50
0

25
50
75

100
Marginal Gain

0 5 10 15 20 25 30 35 40

Multi-KRUM

Time (m)

CP
U

Us
ag

e
(%

)

None = 5 = 1

Figure 7.27: Blockchain Process CPU Usage Per Privacy Degree

61 Impact Analysis of Participant Selection and Scoring Algorithms in Horizontal
Blockchain-based Federated Learning

Chapter 8

Proof of Concept of Vertical
Blockchain-based Federated Learning

In this chapter, we provide a proof of concept of Blockchain-based Federated Learning
(BFS) applied to a system with vertically partitioned data. Specifically, we aim to:

1. Present design and implementation of a Vertical Blockchain-based Federated Learn-
ing system. As discussed in Section 3.6, only one other work [56] discusses possibil-
ities of integration of blockchain with Vertical Federated Learning with blockchain,
but it does not provide an actual design or implementation.

2. Demonstrate that our framework is flexible to support additional execution flow
steps and algorithms, as well as both Horizontal and Vertical Federated Learning.
As explained in Section 5.3, the model we use for Vertical Federated Learning
requires an additional step in each round. By showing that it is trivial to add new
steps to the rounds, we also show that BlockLearning is flexible.

8.1 Requirements Analysis

As discussed in Section 5.3, our Vertical Federated Learning implementation uses the
Split-CNN model. This model poses different requirements on our framework when com-
pared to a regular CNN. These requirements are as follows:

1. Support different models for the clients and the servers. As explained in Section 5.3,
the clients have the head model, while the servers have the tail model. This is
different than the model we used for Horizontal Federated Learning, which is the
same on the devices, regardless of their type.

2. Support additional backpropagation confirmation phase. After submitting the ag-
gregations, and before terminating the round, the clients have to confirm that they
backpropagated the gradient updates from the tail model to their own head models.
This is related to the fact that the clients and the servers have different models.

The second requirement can be further divided into the following functional requirements:

62

1. Execution of backpropagation confirmation phase after aggregations submission
phase.

2. Supporting backpropagation gradient submission by the servers to the smart con-
tract.

3. Supporting backpropagation retrieval by the clients from the smart contract.

4. Supporting backpropagation confirmation by the clients to the smart contract.

The execution flow of each round when a Split-CNN model is used is illustrated in Fig-
ure 8.1. Compared to the original execution flow, depicted in Figure 4.1, it becomes
clear that (i) the scoring phase is not used, as it is not relevant in the context of Vertical
Federated Learning, and (ii) there is an additional backpropagation confirmation phase
before the round is terminated.

Round

Initialization

by owner

Updates

Submission

by trainers

Aggregations

Submission
by aggregators

1 2 3
Round

Termination
by owner

5
Confirm

Backpropagation

by trainers

4

Figure 8.1: Round Execution Flow With Split-CNN Model

8.2 BlockLearning’s Extension

Most of the aforementioned requirements pertain the smart contract. Therefore, we first
start by making the required changes to the smart contracts:

1. Add a new phase, called WaitingForBackpropagation, to the RoundPhase enu-
meration in the Base contract.

2. Create a new smart contract, called VerticalSplitCNN, which inherits the main
functionality from the Base smart contract, and provides the additional function-
alities required for the backpropagation phase.

Figure 8.2 illustrates the smart contract additions to the original design of our Block-
Learning framework presented in Chapter 4. It is important to note that all these changes
are additions, and they do not change how any existing feature behaves.

Base

...

«Enumeration»
RoundPhase

Stopped
WaitingForUpdates
WaitingForScores
WaitingForAggregations
WaitingForTermination
WaitingForBackpropagation

VerticalSplitCNN

+ tailModel: string
+ grads: map(int => address => address => string

+ startRound(): void
+ submitAggregation(string, address[], string[])
+ getGradient(): string
+ confirmBackpropagation(): void

Figure 8.2: Split-CNN Smart Contracts Extension Class Diagram

After creating the new smart contract, the smart contract bridge has to be extended in

63 Proof of Concept of Vertical Blockchain-based Federated Learning

order to include the new smart contract functions. This extension is trivial as explained
in Section 4.2.2.3.

The model training procedure for the Split-CNN model is slightly different from the
CNN used for Horizontal Vertical Learning. For the Split-CNN, the clients submit an
update with the intermediate outputs of the last layer of the head model, instead of
the weights. During the aggregation phase, the servers calculate the gradients of the
intermediate outputs, which are then backpropagated to the clients. To support this, we
implement two new classes: TrainerSplitCNN and AggregatorSplitCNN, which imple-
ment the trainer() and aggregate() interfaces, respectively, as specified in Chapter 4.
In addition, the TrainerSplitCNN class supports a new method, backward(), that will
be called during the new backpropagation phase.

Finally, we write server and client scripts for the Vertical Federated Learning using the
building blocks from the BlockLearning framework. Algorithm 2 illustrates the client
main loop when used with a Split-CNN model. The main differences from the original
BlockLearning framework, as presented in Chapter 4, are that the framework does not
have scoring algorithm, and that we take into account the backpropagation phase. The
server main loop when used with a Split-CNN model is the same as the original server
main loop except that it initializes an instance of the AggregatorSplitCNN class instead
of the regular aggregator.

Algorithm 2 Client Script Main Loop for Split-CNN

T ← Initialize Split-CNN Trainer
while True do

P ← Get Phase From Smart Contract
if P is Waiting For Updates then

Execute Training Procedure T.train()
else if P is Waiting For Backpropagation then

Execute Backpropagation Procedure T.backward()
end if

end while

8.3 Experiments and Results

After extending our framework in order to support the Split-CNN model, we executed
the experiments for Vertical Federated Learning in order to validate whether our imple-
mentation was successful and the Vertical BFL can be supported. The experiments were
executed in the same way as the experiments for the Horizontal BFL, using BlockLearn-
ing’s Testbed. The only difference is that, this time, we used the client and server scripts
that we developed for the Split-CNN model.

We ran two experiments with two different number of clients: 2 and 4. The decision to
use 2 clients was motivated by [31], where the Split-CNN was introduced for Vertical FL
without blockchain for the first time. In addition, we also performed experiments with 4
clients.

64 Proof of Concept of Vertical Blockchain-based Federated Learning

8.3.1 Execution Time, Transaction Cost, and Transaction Latency

As it can be seen from Table 8.1, this experiment was faster than most experiments,
which is easily explained by the low number of clients. In addition, it is observed that
the experiments take longer with 4 clients than with 2.

Regarding the transaction latency, it can be seen that it is similar to what we have seen
in previous chapters. Similarly, the transaction costs do not present significant changes
as the number of clients is relatively low. However, as expected, the transaction costs are
slightly higher in case of having 4 clients.

2 4

E2E Time (m) 18.08 24.30
Mean Round Time (s) 21.68 29.15

Mean Transaction Latency (s) 1.482 1.418
Mean Transaction Cost (Gas) 138659 141013

Table 8.1: Execution Time, Transaction Cost, and Transaction Latency Per Number of Clients

8.3.2 Model Accuracy and Convergence

Figure 8.3 illustrates the model accuracy of our experiments as well as those of Romanini
et al. [72], where a Split-CNN model without blockchain was used with the MNIST
data set. It can be seen that model accuracy of [72] is higher, which may be related
to implementation differences such as the Machine Learning library used, which is not
known.

0 10 20 30 40 50
Round

0

20

40

60

80

100

Ac
cu

ra
cy

 (%
)

2 Clients
4 Clients
Romanini et al., 2021

Figure 8.3: Model Accuracy Per Number of Clients

8.3.3 Communication Costs

The communication costs, illustrated in Figure 8.4, are also within the expected values.

65 Proof of Concept of Vertical Blockchain-based Federated Learning

We can observe at the client sides that there is no major difference of traffic when the
number of clients increases. This can be explained by the fact that, by using a Split-
CNN, each client is only required to upload its own intermediate results and downloads
the gradient updates, which are similar in size.

At the servers, the costs are higher as the number of clients increases. Since the higher
number of clients lead to higher number of heads in the Split-CNN model, the servers are
required to download more intermediate results and to upload more gradient updates.
Therefore, the network traffic at the servers increases with the number of clients.

On the blockchain, the difference of number of clients is not significant to make a signif-
icant difference on traffic, since these experiments ran with a very low number of clients.

0.00

20.00

40.00

60.00

80.00

100.00

Cl
ie

nt
 P

ro
ce

ss

0.00

20.00

40.00

60.00

80.00

100.00

Se
rv

er
 P

ro
ce

ss

2 4
0.00

1.00

2.00

3.00

4.00

5.00

Bl
oc

kc
ha

in
 P

ro
ce

ss

Ne
tw

or
k

Tr
af

fic
 (M

B)

Number of Clients

Inbound Outbound

Figure 8.4: Network Traffic Per Round Per Number of Clients

8.3.4 Computation Costs

Computation costs, namely RAM usage and CPU usage, are depicted in Figure 8.5 and
Figure 8.6, respectively.

Regarding the RAM usage, we observe that with a higher number of clients, there is a
higher RAM usage on the serves and the blockchain processes. This is caused by the
fact that more data is being stored in-memory due to the higher amount of intermediate
results that the servers store in-memory, as well as the number of blockchain transactions
in the blockchain. At the clients, however, the opposite happens. This can be explained
by the fact that when there are more clients, each client has less features as per the data
partitioning explained in Section 5.2.

Regarding the CPU usage, we see similar results as to the RAM usage, which are explained

66 Proof of Concept of Vertical Blockchain-based Federated Learning

by the same reasons.

8.4 Conclusions and Improvements

From our experiments, we can conclude that it is possible to apply a Blockchain-based
Federated Learning system to vertically partitioned data. In addition, we also showed
how flexible our BlockLearning framework is and how we can add new features to it
without changing the rest of the framework.

In future, it would be interesting to investigate how to make BlockLearning more generic
in order to support other Vertical Federated Learning models than only Split-CNN. In
addition, it would be interesting to incorporate the Private Set Intersection phase into
our framework. This would allow the framework to be directly applied to cases where
the clients have intersecting, but not equal, sample spaces.

67 Proof of Concept of Vertical Blockchain-based Federated Learning

2000

4000

6000

8000

10000

Cl
ie

nt
 P

ro
ce

ss

500

1000

1500

2000

Se
rv

er
 P

ro
ce

ss

0 5 10 15 20 25
0

200

400

600

800

1000

Bl
oc

kc
ha

in
 P

ro
ce

ss

Time (m)

RA
M

 U
sa

ge
 (M

B)

2 4

Figure 8.5: RAM Usage Per Number of Clients

0

20

40

60

80

100

Cl
ie

nt
 P

ro
ce

ss

0

20

40

60

80

100

Se
rv

er
 P

ro
ce

ss

0 5 10 15 20 25
0

20

40

60

80

100

Bl
oc

kc
ha

in
 P

ro
ce

ss

Time (m)

CP
U

Us
ag

e
(%

)

2 4

Figure 8.6: CPU Usage Per Number of Clients

68 Proof of Concept of Vertical Blockchain-based Federated Learning

Chapter 9

Conclusions and Future Directions

Blockchain-based Federated Learning (BFL) was initially introduced to bring some de-
sirable properties of the blockchain, such as immutability, persistency, authentication,
and decentralization, to the Federated Learning. In this thesis, we explored how differ-
ent types of algorithms, namely consensus, participant selection, and scoring algorithms,
impact the execution time, transaction costs, transaction latency, model accuracy and
convergence, communication costs, and computation costs of the BFL system.

Our literature review revealed that there is a lack of publicly accessible and modular BFL
framework. To fill this gap, we designed and implemented the first open-source modular
BFL framework, which allows others to customize the system, in terms of architecture,
algorithms and execution flow. By making it available to the public, it has the potential
to empower future research on new BFL-related algorithms and architectures, without
requiring the researchers to write the whole system from scratch.

9.1 Looking Back at the Main Research Question

We aimed to answer the question on what is the impact of different consensus, participant
selection and scoring algorithms in a BFL system on execution time, convergence and
accuracy, as well as communication and computation costs. For doing so, we executed
all the experiments summarized in Table 9.1. The main findings of our experiments
regarding each type of algorithms are:

• Consensus Algorithms : On the one hand, PoW presented the highest computation
costs and is the slowest. On the other hand, QBFT and PoA presented the lowest
computation costs and are the fastest. Moreover, QBFT has a three times higher
communication costs compared to PoW and PoA. Consequently, we concluded that
PoA is the most cost-efficient consensus algorithm analyzed.

• Participant Selection Algorithms : Both random selection and first-come first-served
presented similar computation and communication costs. Random selection re-
vealed to be more fair, providing more stable accuracy convergence, as it gives each
client an equal chance of participating in a round.

• Scoring Algorithms : Adding a scoring algorithm to the BFS system increased the

69

execution time up to twice as much, depending on whether the algorithm is executed
by the servers of the clients. Out of the three scoring algorithms analyzed, Marginal
Gain provided the highest accuracy with increasing number of clients and increasing
privacy degree. At the same time, it also had the highest computation costs for
the clients. Moreover, Multi-KRUM revealed to be a good alternative in order
to minimize the computation costs for the clients, while retaining high accuracy.
Finally, BlockFlow performed the worst in all of the mentioned aspects.

Overall, our experiments showed that adding a blockchain, namely the Ethereum, to
a Federated Learning system, increases the execution time, communication costs, and
computation usage in general. After all, by adding a blockchain to a FL system, we
are replacing a single centralized server by multiple distributed servers, which have to
coordinate between themselves in order to reach a consensus in terms of storage and
execution, consuming more time and resources.

Finally, we provided a proof of concept on how to extend our BlockLearning framework
in order to support Vertical Federated Learning. By doing so, we presented the first
implementation of Vertical Federated Learning in the context of BFL, showing that it is
possible to have a Blockchain-based Vertical Federated Learning system. In addition, we
demonstrated that our framework is flexible and extensible, such that it can be used to
develop new algorithms and architectures.

9.2 Future Work

Below is a summary of some future directions that would be interesting pursue in the
context of Blockchain-based Federated Learning systems:

• Consensus Algorithms : to investigate if it is feasible to extend the Ethereum
blockchain with the custom resource-efficient algorithms presented in Section 3.1.

• Scoring Algorithms : to investigate and develop new scoring algorithms that do
not require model evaluation at the clients side in order to reduce the resource
usage. An example of this type of algorithm is Multi-KRUM, which is executed
by the servers. All analyzed scoring algorithms executed by clients involve model
evaluation, which leads to longer execution times and higher resource usage.

• Blockchain-based Vertical Federated Learning : to extend the BlockLearning frame-
work in order to support the Private Set Intersection phase, such that it becomes
more flexible to develop new Vertical Federated Learning algorithms.

• BlockLearning GUI : to develop a graphical interface for BlockFlow in order to
allow users to submit training requests through an easy to use interface, as well as
visualize the training process and download the weights directly without the need
for command line tools.

70 Conclusions and Future Directions

⋆
:
T
h
is

W
or
k
,
I:
II
D
,
N
:
N
on

-I
ID

,
H
:
H
or
iz
on

ta
l,
V
:
V
er
ti
ca
l,
?:

U
n
k
n
ow

n

G
ro
u
p

ID
W
or
k

C
on

se
n
su
s

C
li
en
ts

P
ar
ti
ci
p
an

ts
S
co
ri
n
g

D
at
a

P
ri
va
cy

A
cc
u
ra
cy

A
lg
or
it
h
m
s

S
el
ec
ti
on

P
ar
ti
ti
on

D
is
tr
ib
u
ti
on

D
eg
re
e

C
on

se
n
su
s

A
lg
or
it
h
m
s

1
⋆

P
oA

25
R
an

d
om

N
on

e
H

N
N
on

e
98
.5
4

2
P
oW

98
.3
5

3
IB

F
T

98
.9
0

P
ar
ti
ci
p
an

t
S
el
ec
ti
on

A
lg
or
it
h
m
s

1
⋆

P
oA

25
R
an

d
om

N
on

e
H

N
N
on

e
98
.5
4

4
F
C
F
S

98
.1
8

S
co
ri
n
g

A
lg
or
it
h
m
s

1

⋆
P
oA

25
R
an

d
om

N
on

e

H
N

N
on

e

98
.5
4

10
B
lo
ck
F
lo
w

97
.0
4

14
M
ar
gi
n
al

G
ai
n

98
.5
8

18
M
u
lt
i-
K
R
U
M

97
.0
0

N
u
m
b
er

of
C
li
en
ts

5

⋆
P
oA

5

R
an

d
om

N
on

e
H

N
N
on

e

97
.7
6

6
10

97
.0
6

1
25

98
.5
4

7
50

98
.8
8

8

⋆
P
oA

5

R
an

d
om

B
lo
ck
F
lo
w

H
N

N
on

e

97
.9
4

9
10

85
.9
2

10
25

97
.0
4

11
50

97
.8
4

[5
5]

P
oW

25
?

H
?

ϵ
=

?
≥

85
.0
0

50 10
0

12

⋆
P
oA

5

R
an

d
om

M
ar
gi
n
al

G
ai
n

H
N

N
on

e

89
.1
2

13
10

96
.6
2

14
25

98
.5
8

15
50

98
.9
0

[8
]

?
?

?
H

?
N
on

e
≥

90
.0
0

T
ab

le
9.
1:

E
x
p
er
im

en
t
C
on

fi
gu

ra
ti
on

s
an

d
A
cc
u
ra
cy

71 Conclusions and Future Directions

⋆
:
T
h
is

W
or
k
,
I:
II
D
,
N
:
N
on

-I
ID

,
H
:
H
or
iz
on

ta
l,
V
:
V
er
ti
ca
l,
?:

U
n
k
n
ow

n

G
ro
u
p

ID
W
or
k

C
on

se
n
su
s

C
li
en
ts

P
ar
ti
ci
p
an

ts
S
co
ri
n
g

D
at
a

P
ri
va
cy

A
cc
u
ra
cy

A
lg
or
it
h
m
s

S
el
ec
ti
on

P
ar
ti
ti
on

D
is
tr
ib
u
ti
on

D
eg
re
e

N
u
m
b
er

of
C
li
en
ts

16

⋆
P
oA

5

R
an

d
om

M
u
lt
i-
K
R
U
M

H
N

N
on

e

96
.6
8

17
10

98
.4
4

18
25

97
.0
0

19
50

98
.4
8

[9
1]

P
oS

,
p
B
F
T

?
?

H
I

ϵ
=

10
98
.0
0

P
ri
va
cy

D
eg
re
es

1
⋆

P
oA

25
R
an

d
om

N
on

e
H

N
N
on

e
98
.5
4

19
ϵ
=

5
98
.1
8

20
ϵ
=

1
80
.2
2

10
⋆

P
oA

25
R
an

d
om

B
lo
ck
F
lo
w

H
N

N
on

e
97
.0
4

21
ϵ
=

5
94
.0
0

22
ϵ
=

1
84
.6
8

[5
5]

P
oW

25
?

H
?

ϵ
=

?
≥

85
.0
0

14
⋆

P
oA

25
R
an

d
om

M
ar
gi
n
al

G
ai
n

H
N

N
on

e
98
.5
8

23
ϵ
=

5
98
.3
6

24
ϵ
=

1
92
.2
6

[8
]

?
?

?
H

?
N
on

e
≥

90
.0
0

18
⋆

P
oA

25
R
an

d
om

M
u
lt
i-
K
R
U
M

H
N

N
on

e
97
.0
0

25
ϵ
=

5
94
.7
0

26
ϵ
=

1
91
.0
0

[6
4]

?
?

R
an

d
om

H
N

ϵ
=

?
94
.3
9

[9
1]

P
oS

,
p
B
F
T

?
?

H
I

ϵ
=

10
98
.0
0

ϵ
=

5
96
.5
0

ϵ
=

1
86
.0
0

V
er
ti
ca
l
F
ed
er
at
ed

L
ea
rn
in
g

27
⋆

P
oA

2
N
/A

N
/A

V
N

N
on

e
85
.3
8

28
4

88
.3
1

T
ab

le
9.
1:

E
x
p
er
im

en
t
C
on

fi
gu

ra
ti
on

s
an

d
A
cc
u
ra
cy

(C
on

ti
n
u
ed

)

72 Conclusions and Future Directions

Bibliography

[1] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C.,
Corrado, G. S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfel-
low, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser,
L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Mur-
ray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I.,
Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F.,
Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., and
Zheng, X. TensorFlow: Large-scale machine learning on heterogeneous systems,
2015. Software available from tensorflow.org.

[2] Academy, B. Proof of authority explained, Dec 2020.

[3] Alqahtani, S., and Demirbas, M. Bottlenecks in blockchain consensus pro-
tocols. In 2021 IEEE International Conference on Omni-Layer Intelligent Systems
(COINS) (aug 2021), IEEE.

[4] Awan, S., Li, F., Luo, B., and Liu, M. Poster: A reliable and accountable
privacy-preserving federated learning framework using the blockchain. In Proceed-
ings of the 2019 ACM SIGSAC Conference on Computer and Communications Se-
curity (New York, NY, USA, 2019), CCS ’19, Association for Computing Machinery,
p. 2561–2563.

[5] Bao, X., Su, C., Xiong, Y., Huang, W., and Hu, Y. Flchain: A blockchain for
auditable federated learning with trust and incentive. In 2019 5th International Con-
ference on Big Data Computing and Communications (BIGCOM) (2019), pp. 151–
159.

[6] Benet, J. Ipfs - content addressed, versioned, p2p file system, 2014.

[7] Bonawitz, K., Eichner, H., Grieskamp, W., Huba, D., Ingerman, A.,
Ivanov, V., Kiddon, C., Konečný, J., Mazzocchi, S., McMahan, B.,
Van Overveldt, T., Petrou, D., Ramage, D., and Roselander, J. Towards
federated learning at scale: System design. In Proceedings of Machine Learning and
Systems (2019), A. Talwalkar, V. Smith, and M. Zaharia, Eds., vol. 1, pp. 374–388.

[8] Cai, H., Rueckert, D., and Passerat-Palmbach, J. 2cp: Decentralized pro-
tocols to transparently evaluate contributivity in blockchain federated learning en-
vironments, 2020.

[9] Cao, M., Zhang, L., and Cao, B. Toward on-device federated learning: A direct

73

acyclic graph-based blockchain approach. IEEE Transactions on Neural Networks
and Learning Systems (2021), 1–15.

[10] Castro, M., and Loskov, B. Practical byzantine fault tolerance, 1999.

[11] Chai, H., Leng, S., Chen, Y., and Zhang, K. A hierarchical blockchain-
enabled federated learning algorithm for knowledge sharing in internet of vehicles.
IEEE Transactions on Intelligent Transportation Systems 22, 7 (2021), 3975–3986.

[12] Chen, H., Asif, S. A., Park, J., Shen, C.-C., and Bennis, M. Robust
blockchained federated learning with model validation and proof-of-stake inspired
consensus, 2021.

[13] ConsenSys. Consensys/quorum: A permissioned implementation of ethereum sup-
porting data privacy.

[14] Contributors, S. Solidity 0.8.15 documentation, 2021.

[15] Contributors, T. Convolutional neural network (cnn) : Tensorflow core.

[16] Cui, L., Su, X., Ming, Z., Chen, Z., Yang, S., Zhou, Y., and Xiao, W.
Creat: Blockchain-assisted compression algorithm of federated learning for content
caching in edge computing. IEEE Internet of Things Journal (2020), 1–1.

[17] Desai, H. B., Ozdayi, M. S., and Kantarcioglu, M. Blockfla: Accountable
federated learning via hybrid blockchain architecture. In Proceedings of the Eleventh
ACM Conference on Data and Application Security and Privacy (New York, NY,
USA, 2021), CODASPY ’21, Association for Computing Machinery, p. 101–112.

[18] D’Hondt, T. Federated learning over local learning: an opportunity for collabora-
tion. Master’s thesis, Eindhoven University of Technology, 2020.

[19] Dias, H. How to use pos in a local network, Apr 2022.

[20] Edwood, F. Proof-of-work vs. proof-of-stake for scaling blockchains, Jun 2020.

[21] Ethereum. ethereum/go-ethereum: Official go implementation of the ethereum
protocol.

[22] Ethereum. Ethereum/web3.py: A python interface for interacting with the
ethereum blockchain and ecosystem.

[23] Fan, S., Zhang, H., Zeng, Y., and Cai, W. Hybrid blockchain-based resource
trading system for federated learning in edge computing. IEEE Internet of Things
Journal 8, 4 (2021), 2252–2264.

[24] Fang, C., Guo, Y., Ma, J., Xie, H., and Wang, Y. A privacy-preserving and
verifiable federated learning method based on blockchain. Computer Communica-
tions 186 (2022), 1–11.

[25] Feng, L., Zhao, Y., Guo, S., Qiu, X., Li, W., and Yu, P. Bafl: A blockchain-
based asynchronous federated learning framework. IEEE Transactions on Computers
71, 5 (2022), 1092–1103.

74 BIBLIOGRAPHY

[26] Finney, H. Reusable proofs of work.

[27] GERON, A. Hands-on machine learning with scikit-learn, Keras, and tensorflow:
Concepts, tools and techniques to build Intelligent Systems. O’Reilly, 2019.

[28] Holohan, N., Braghin, S., Mac Aonghusa, P., and Levacher, K. Diff-
privlib: the IBM differential privacy library. ArXiv e-prints 1907.02444 [cs.CR]
(July 2019).

[29] Hua, G., Zhu, L., Wu, J., Shen, C., Zhou, L., and Lin, Q. Blockchain-
based federated learning for intelligent control in heavy haul railway. IEEE Access
8 (2020), 176830–176839.

[30] Jain, A., Patel, H., Nagalapatti, L., Gupta, N., Mehta, S., Guttula, S.,
Mujumdar, S., Afzal, S., Sharma Mittal, R., and Munigala, V. Overview
and importance of data quality for machine learning tasks. In 26th ACM SIGKDD
International Conference on Knowledge Discovery & Data Mining (New York, NY,
USA, 2020), KDD ’20, Association for Computing Machinery, p. 3561–3562.

[31] Jin, T., and Hong, S. Split-cnn: Splitting window-based operations in convo-
lutional neural networks for memory system optimization. In Proceedings of the
Twenty-Fourth International Conference on Architectural Support for Programming
Languages and Operating Systems (New York, NY, USA, 2019), ASPLOS ’19, As-
sociation for Computing Machinery, p. 835–847.

[32] Kang, J., Xiong, Z., Niyato, D., Xie, S., and Zhang, J. Incentive mechanism
for reliable federated learning: A joint optimization approach to combining reputa-
tion and contract theory. IEEE Internet of Things Journal 6, 6 (2019), 10700–10714.

[33] Kang, J., Xiong, Z., Niyato, D., Yu, H., Liang, Y.-C., and Kim, D. I.
Incentive design for efficient federated learning in mobile networks: A contract theory
approach. In 2019 IEEE VTS Asia Pacific Wireless Communications Symposium
(APWCS) (2019), pp. 1–5.

[34] Kang, J., Xiong, Z., Niyato, D., Zou, Y., Zhang, Y., and Guizani, M.
Reliable federated learning for mobile networks. IEEE Wireless Communications 27,
2 (2020), 72–80.

[35] Kim, H., Park, J., Bennis, M., and Kim, S.-L. Blockchained on-device feder-
ated learning. IEEE Communications Letters 24, 6 (2020), 1279–1283.

[36] Kim, Y. J., and Hong, C. S. Blockchain-based node-aware dynamic weighting
methods for improving federated learning performance. In 2019 20th Asia-Pacific
Network Operations and Management Symposium (APNOMS) (2019), pp. 1–4.

[37] Korkmaz, C., Kocas, H. E., Uysal, A., Masry, A., Ozkasap, O., and
Akgun, B. Chain fl: Decentralized federated machine learning via blockchain. In
2020 Second International Conference on Blockchain Computing and Applications
(BCCA) (2020), pp. 140–146.

[38] Lan, Y., Liu, Y., Li, B., and Miao, C. Proof of learning (pole): Empowering
machine learning with consensus building on blockchains (demo). Proceedings of the

75 BIBLIOGRAPHY

AAAI Conference on Artificial Intelligence 35, 18 (May 2021), 16063–16066.

[39] LeCun, Y., Cortes, C., and Burges, C. Mnist handwritten digit database.
ATT Labs [Online]. Available: http://yann.lecun.com/exdb/mnist 2 (2010).

[40] Li, D., Han, D., Weng, T.-H., Zheng, Z., Li, H., Liu, H., Castiglione, A.,
and Li, K.-C. Blockchain for federated learning toward secure distributed machine
learning systems: a systemic survey. Soft Computing (Nov. 2021).

[41] Li, T., Sahu, A. K., Talwalkar, A., and Smith, V. Federated learning:
Challenges, methods, and future directions. IEEE Signal Processing Magazine 37, 3
(2020), 50–60.

[42] Li, Y., Chen, C., Liu, N., Huang, H., Zheng, Z., and Yan, Q. A blockchain-
based decentralized federated learning framework with committee consensus. IEEE
Network 35, 1 (2021), 234–241.

[43] Lin, T., Kong, L., Stich, S. U., and Jaggi, M. Ensemble distillation for robust
model fusion in federated learning. In Advances in Neural Information Processing
Systems (2020), H. Larochelle, M. Ranzato, R. Hadsell, M. Balcan, and H. Lin, Eds.,
vol. 33, Curran Associates, Inc., pp. 2351–2363.

[44] Lu, Y., Huang, X., Dai, Y., Maharjan, S., and Zhang, Y. Blockchain
and federated learning for privacy-preserved data sharing in industrial iot. IEEE
Transactions on Industrial Informatics 16, 6 (2020), 4177–4186.

[45] Lu, Y., Huang, X., Zhang, K., Maharjan, S., and Zhang, Y. Blockchain
empowered asynchronous federated learning for secure data sharing in internet of
vehicles. IEEE Transactions on Vehicular Technology 69, 4 (2020), 4298–4311.

[46] Lu, Y., Huang, X., Zhang, K., Maharjan, S., and Zhang, Y. Blockchain
and federated learning for 5g beyond. IEEE Network 35, 1 (2021), 219–225.

[47] Lu, Y., Huang, X., Zhang, K., Maharjan, S., and Zhang, Y. Low-latency
federated learning and blockchain for edge association in digital twin empowered 6g
networks. IEEE Transactions on Industrial Informatics 17, 7 (2021), 5098–5107.

[48] Ma, C., Li, J., Shi, L., Ding, M., Wang, T., Han, Z., and Poor, H. V.
When federated learning meets blockchain: A new distributed learning paradigm.
IEEE Computational Intelligence Magazine 17, 3 (2022), 26–33.

[49] Majeed, U., and Hong, C. S. Flchain: Federated learning via mec-enabled
blockchain network. In 2019 20th Asia-Pacific Network Operations and Management
Symposium (APNOMS) (2019), pp. 1–4.

[50] Martinez, I., Francis, S., and Hafid, A. S. Record and reward federated
learning contributions with blockchain. In 2019 International Conference on Cyber-
Enabled Distributed Computing and Knowledge Discovery (CyberC) (2019), pp. 50–
57.

[51] McMahan, H. B., Moore, E., Ramage, D., Hampson, S., and Arcas, B.
A. y. Communication-efficient learning of deep networks from decentralized data.

76 BIBLIOGRAPHY

In Proc. of the 20th International Conference on Artificial Intelligence and Statistics
(2017), vol. 54, pp. 1273–1282.

[52] Merkel, D. Docker: lightweight linux containers for consistent development and
deployment. Linux journal 2014, 239 (2014), 2.

[53] Mondal, A., Virk, H., and Gupta, D. Beas: Blockchain enabled asynchronous
& secure federated machine learning, 2022.

[54] Moniz, H. The istanbul bft consensus algorithm, 2020.

[55] Mugunthan, V., Rahman, R., and Kagal, L. Blockflow: An accountable and
privacy-preserving solution for federated learning. ArXiv (2020).

[56] Nagar, A. Privacy-preserving blockchain based federated learning with differential
data sharing, 2019.

[57] Nakamoto, S. Bitcoin: A peer-to-peer electronic cash system, 2009.

[58] Nguyen, D. C., Ding, M., Pathirana, P. N., Seneviratne, A., Li, J., and
Vincent Poor, H. Federated learning for internet of things: A comprehensive
survey. IEEE Communications Surveys & Tutorials 23, 3 (2021), 1622–1658.

[59] Nguyen, D. C., Ding, M., Pham, Q.-V., Pathirana, P. N., Le, L. B.,
Seneviratne, A., Li, J., Niyato, D., and Poor, H. V. Federated learning
meets blockchain in edge computing: Opportunities and challenges. IEEE Internet
of Things Journal 8, 16 (2021), 12806–12825.

[60] of Cambridge, U. Cambridge bitcoin electricity consumption index.

[61] Passerat-Palmbach, J., Farnan, T., Miller, R., Gross, M. S., Flannery,
H. L., and Gleim, B. A blockchain-orchestrated federated learning architecture
for healthcare consortia, 2019.

[62] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G.,
Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf,
A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S.,
Steiner, B., Fang, L., Bai, J., and Chintala, S. Pytorch: An imperative
style, high-performance deep learning library. In Advances in Neural Information
Processing Systems 32, H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc,
E. Fox, and R. Garnett, Eds. Curran Associates, Inc., 2019, pp. 8024–8035.

[63] Peng, Z., Xu, J., Chu, X., Gao, S., Yao, Y., Gu, R., and Tang, Y. Vfchain:
Enabling verifiable and auditable federated learning via blockchain systems. IEEE
Transactions on Network Science and Engineering 9, 1 (2022), 173–186.

[64] Peyvandi, A., Majidi, B., Peyvandi, S., and Patra, J. C. Privacy-preserving
federated learning for scalable and high data quality computational-intelligence-as-
a-service in society 5.0. Multimedia Tools and Applications (Mar 2022).

[65] Pfitzner, B., Steckhan, N., and Arnrich, B. Federated learning in a medical
context: A systematic literature review. ACM Trans. Internet Technol. 21, 2 (jun

77 BIBLIOGRAPHY

2021).

[66] Pokhrel, S. R., and Choi, J. Federated learning with blockchain for autonomous
vehicles: Analysis and design challenges. IEEE Transactions on Communications
68, 8 (2020), 4734–4746.

[67] Preuveneers, D., Rimmer, V., Tsingenopoulos, I., Spooren, J., Joosen,
W., and Ilie-Zudor, E. Chained anomaly detection models for federated learning:
An intrusion detection case study. Applied Sciences 8, 12 (2018).

[68] Qu, X., Wang, S., Hu, Q., and Cheng, X. Proof of federated learning: A
novel energy-recycling consensus algorithm. IEEE Transactions on Parallel and
Distributed Systems 32, 8 (2021), 2074–2085.

[69] Qu, Y., Pokhrel, S. R., Garg, S., Gao, L., and Xiang, Y. A blockchained
federated learning framework for cognitive computing in industry 4.0 networks. IEEE
Transactions on Industrial Informatics 17, 4 (2021), 2964–2973.

[70] Qu, Y., Uddin, M. P., Gan, C., Xiang, Y., Gao, L., and Yearwood, J.
Blockchain-Enabled Federated Learning: A Survey. ACM Computing Surveys (Mar.
2022), 3524104.

[71] Ramanan, P., and Nakayama, K. Baffle : Blockchain based aggregator free fed-
erated learning. In 2020 IEEE International Conference on Blockchain (Blockchain)
(2020), pp. 72–81.

[72] Romanini, D., Hall, A. J., Papadopoulos, P., Titcombe, T., Ismail, A.,
Cebere, T., Sandmann, R., Roehm, R., and Hoeh, M. A. Pyvertical: A
vertical federated learning framework for multi-headed splitnn, 2021.

[73] Sarker, I. H. Machine learning: Algorithms, real-world applications and research
directions. SN Computer Science 2, 3 (Mar 2021), 160.

[74] Shayan, M., Fung, C., Yoon, C. J. M., and Beschastnikh, I. Biscotti: A
blockchain system for private and secure federated learning. IEEE Transactions on
Parallel and Distributed Systems 32, 7 (2021), 1513–1525.

[75] Shen, M., Wang, H., Zhang, B., Zhu, L., Xu, K., Li, Q., and Du, X.
Exploiting unintended property leakage in blockchain-assisted federated learning for
intelligent edge computing. IEEE Internet of Things Journal 8, 4 (2021), 2265–2275.

[76] Sherman, A. T., Javani, F., Zhang, H., and Golaszewski, E. On the origins
and variations of blockchain technologies. IEEE Security & Privacy 17, 1 (2019),
72–77.

[77] Szilágyi, P. Eip-225: Clique proof-of-authority consensus protocol, Mar 2017.

[78] Toyoda, K., and Zhang, A. N. Mechanism design for an incentive-aware
blockchain-enabled federated learning platform. In 2019 IEEE International Con-
ference on Big Data (Big Data) (2019), pp. 395–403.

[79] TsingZ0. Tsingz0/pfl-non-iid: Personalized federated learning simulation platform

78 BIBLIOGRAPHY

with non-iid and unbalanced dataset.

[80] University, H. Differential privacy.

[81] Van Rossum, G., and Drake, F. L. Python 3 Reference Manual. CreateSpace,
Scotts Valley, CA, 2009.

[82] Wang, S., Yuan, Y., Wang, X., Li, J., Qin, R., and Wang, F.-Y. An
overview of smart contract: Architecture, applications, and future trends. In 2018
IEEE Intelligent Vehicles Symposium (IV) (2018), pp. 108–113.

[83] Wang, Z., and Hu, Q. Blockchain-based federated learning: A comprehensive
survey, 2021.

[84] Wei, K., Li, J., Ma, C., Ding, M., Wei, S., Wu, F., Chen, G., and Ran-
baduge, T. Vertical federated learning: Challenges, methodologies and experi-
ments, 2022.

[85] Weng, J., Weng, J., Zhang, J., Li, M., Zhang, Y., and Luo, W. Deepchain:
Auditable and privacy-preserving deep learning with blockchain-based incentive.
IEEE Transactions on Dependable and Secure Computing 18, 5 (2021), 2438–2455.

[86] Wilhelmi, F., Giupponi, L., and Dini, P. Blockchain-enabled server-less feder-
ated learning, 2021.

[87] Wood, G. Ethereum: A secure decentralised generalised transaction ledger.

[88] Yang, Q., Liu, Y., Chen, T., and Tong, Y. Federated machine learning:
Concept and applications. ACM Trans. Intell. Syst. Technol. 10, 2 (jan 2019).

[89] Zhang, Q., Palacharla, P., Sekiya, M., Suga, J., and Katagiri, T. Demo:
A blockchain based protocol for federated learning. In 2020 IEEE 28th International
Conference on Network Protocols (ICNP) (2020), pp. 1–2.

[90] Zhang, W., Lu, Q., Yu, Q., Li, Z., Liu, Y., Lo, S. K., Chen, S., Xu, X.,
and Zhu, L. Blockchain-based federated learning for device failure detection in
industrial iot. IEEE Internet of Things Journal 8, 7 (2021), 5926–5937.

[91] Zhao, Y., Zhao, J., Jiang, L., Tan, R., Niyato, D., Li, Z., Lyu, L., and
Liu, Y. Privacy-preserving blockchain-based federated learning for iot devices. IEEE
Internet of Things Journal 8, 3 (2021), 1817–1829.

[92] Zhou, J., Zhang, S., Lu, Q., Dai, W., Chen, M., Liu, X., Pirttikangas,
S., Shi, Y., Zhang, W., and Herrera-Viedma, E. A survey on federated
learning and its applications for accelerating industrial internet of things, 2021.

[93] Zhou, S., Huang, H., Chen, W., Zhou, P., Zheng, Z., and Guo, S. Pirate:
A blockchain-based secure framework of distributed machine learning in 5g networks.
IEEE Network 34, 6 (2020), 84–91.

79 BIBLIOGRAPHY

	List of Figures
	List of Tables
	Introduction
	Motivation
	Problem Statement
	Research Questions
	Contributions and Outline

	Background
	Machine Learning
	Federated Learning
	Categories of Federated Learning

	Blockchain
	Smart Contracts
	Blockchain Platforms
	Consensus Algorithm

	Blockchain-based Federated Learning
	Participants Selection Algorithms
	Scoring and Aggregation Algorithms
	Privacy Mechanisms

	Related Work
	Consensus Algorithms
	Model Parameter Storage
	Participants Selection Algorithms
	Scoring and Aggregation Algorithms
	Privacy Mechanisms
	Other Remarks
	Conclusions

	Framework Design and Implementation
	BlockLearning Framework's Design
	Structure and Modules

	BlockLearning Framework's Implementation
	Smart Contracts
	Library
	Testbed

	Experimental Setup and Evaluation
	Data Set
	Client Sampling
	Horizontal
	Vertical

	Machine Learning Models
	Horizontal Model
	Vertical Model

	Hardware and Software Specifications
	Performance Evaluation Metrics
	Execution Time
	Transaction Costs and Transaction Latency
	Model Accuracy
	Communication and Computation Costs

	Experiment Groups

	Impact Analysis of Consensus Algorithms
	Execution Time, Transaction Cost, and Transaction Latency
	Model Accuracy and Convergence
	Communication Costs
	Computation Costs
	Conclusions and Improvements

	Impact Analysis of Participant Selection and Scoring Algorithms in Horizontal Blockchain-based Federated Learning
	Participant Selection Algorithms
	Execution Time, Transaction Cost, and Transaction Latency
	Model Accuracy and Convergence
	Communication Costs
	Computation Costs
	Conclusions

	Scoring Algorithms
	Overall Comparison
	Number of Clients
	Privacy Degrees

	Proof of Concept of Vertical Blockchain-based Federated Learning
	Requirements Analysis
	BlockLearning's Extension
	Experiments and Results
	Execution Time, Transaction Cost, and Transaction Latency
	Model Accuracy and Convergence
	Communication Costs
	Computation Costs

	Conclusions and Improvements

	Conclusions and Future Directions
	Looking Back at the Main Research Question
	Future Work

	Bibliography

